Featured Research

from universities, journals, and other organizations

New perspective for understanding the mechanisms of catalytic conversion

Date:
February 10, 2010
Source:
European Synchrotron Radiation Facility (ESRF)
Summary:
The oxidation of toxic carbon monoxide (CO) to carbon dioxide occurs every day in millions of cars. Despite being one of the most studied catalytic processes, the exact mechanism of interaction between the carbon monoxide molecule and the catalyst, often platinum, is not fully understood. An important step in the reaction is the adsorption of CO on the surface of the catalyst. Scientists have now managed to see how the electrons in the platinum reorganize as the adsorption is taking place and why catalysts are “poisoned”, i.e. why their activity is reduced.

The oxidation of toxic carbon monoxide (CO) to carbon dioxide occurs every day in millions of cars. Despite being one of the most studied catalytic processes, the exact mechanism of interaction between the carbon monoxide molecule and the catalyst, often platinum, is not fully understood. An important step in the reaction is the adsorption of CO on the surface of the catalyst. A team of scientists from the ESRF and the ETH in Zurich (Switzerland) has managed to see how the electrons in the platinum reorganize as the adsorption is taking place and why catalysts are "poisoned," i.e. why their activity is reduced.

It is the first time that this type of experiment has been carried out at the same high temperatures and pressures as in a real car exhaust catalyst.

When the CO or other toxic gases get in contact with the catalyst, a noble metal such as platinum, they oxidize to become less dangerous gases. In this case, CO turns to CO2, which the car expels via the exhaust pipe. However, the efficiency of the catalytic conversion decreases considerably when the catalyst is at low temperature. The scientists from the ESRF and ETH in Zurich determined how the CO poisons the surface of the catalyst. The strong bond between CO and the platinum blocks active sites and makes the metal less susceptible to reaction with oxygen, lowering its reactivity.

Scientists around the world have studied thoroughly the electron structure of adsorbed CO using techniques like vibration and soft X-ray spectroscopy, but few have studied the electrons in the platinum, and it has proven extremely difficult to do it on nanoparticles under ambient pressure. In fact, very few experimental techniques are compatible with the required temperature, gas environment, and the low metal concentration of supported nanoparticles.

The team has developed a technique where they can investigate the platinum electrons that take part in the bond with CO. "We have, for the first time, combined a novel experimental and theoretical approach with an important application in catalysis research. This enables us to look at the adsorption of CO on Pt nanoparticles from a new perspective that was previously not accessible" explains Pieter Glatzel, scientist at the ESRF.

The next step is to look at the changes in catalyst structure under actual catalytic conditions, such as those occurring during the preferential oxidation of CO and the water gas shift reaction. "We are very hopeful of this new technique and are sure that it will enable us to improve our knowledge about catalytic systems and, with it, make them better," says Jeroen van Bokhoven, scientist at the ETH.


Story Source:

The above story is based on materials provided by European Synchrotron Radiation Facility (ESRF). Note: Materials may be edited for content and length.


Journal Reference:

  1. Glatzel et al. In Situ Characterization of the 5d Density of States of Pt Nanoparticles upon Adsorption of CO. Journal of the American Chemical Society, 2010; 100203075412003 DOI: 10.1021/ja907760p

Cite This Page:

European Synchrotron Radiation Facility (ESRF). "New perspective for understanding the mechanisms of catalytic conversion." ScienceDaily. ScienceDaily, 10 February 2010. <www.sciencedaily.com/releases/2010/02/100209124501.htm>.
European Synchrotron Radiation Facility (ESRF). (2010, February 10). New perspective for understanding the mechanisms of catalytic conversion. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/02/100209124501.htm
European Synchrotron Radiation Facility (ESRF). "New perspective for understanding the mechanisms of catalytic conversion." ScienceDaily. www.sciencedaily.com/releases/2010/02/100209124501.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins