Featured Research

from universities, journals, and other organizations

New weapon to fight disease-causing bacteria, malaria developed

Date:
February 16, 2010
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers report that they have discovered -- and now know how to exploit -- an unusual chemical reaction mechanism that allows malaria parasites and many disease-causing bacteria to survive. The research team also has developed the first potent inhibitor of this chemical reaction.

Researchers report that they have discovered -- and now know how to exploit -- an unusual chemical reaction mechanism that allows malaria parasites and many disease-causing bacteria to survive. The research team, from the University of Illinois, also has developed the first potent inhibitor of this chemical reaction.

Related Articles


The findings appear in the Proceedings of the National Academy of Sciences.

"There is an urgent need for new drugs to combat malaria and bacterial diseases such as tuberculosis that are becoming resistant to existing treatments," said chemistry professor Eric Oldfield, who led the study. "Millions of people have tuberculosis, for example, and some of the bacterial strains that cause TB are completely drug resistant," he said. The parasites that cause malaria also have become resistant to quinine, chloroquine and now, artemisinin, three common treatments for the disease.

The new study focuses on an essential chemical pathway that occurs in malaria parasites and in most bacteria but not in humans or other animals, making it an ideal drug target. Several teams of researchers have spent nearly a decade trying to understand an important player in this cascade of chemical reactions, an enzyme known as IspH. This enzyme promotes the synthesis of a class of compounds, called isoprenoids, which are essential to life.

"Isoprenoids are the largest class of compounds on the planet," Oldfield said. "There are over 60,000 of them. Cholesterol is an isoprenoid. The orange beta-carotene in carrots is an isoprenoid. And bacterial cell walls are made using isoprenoids."

IspH (rhymes with "lisp, H") is a reductase. It acts on a cellular compound, HMBPP, "reducing" it by adding two electrons and two protons to it in an early stage of isoprenoid biosynthesis. Understanding the structure and function of IspH, researchers hope, will allow them to find a way to block it and shut down production of isoprenoids in the disease-causing bugs.

Oldfield and his colleagues already had discovered the structure of IspH, which has a cube-like cluster of iron and sulfur atoms at its core. They determined that the core contained four iron and four sulfur atoms, a finding they published in the Journal of the American Chemical Society in 2008. (Other researchers later maintained that there were only three iron atoms in IspH, but recently amended their proposed structure to include four iron atoms.)

In the search for possible compounds that would inhibit IspH, Oldfield and his colleagues, including graduate student Weixue Wang, turned to a powerful technique, called electron paramagnetic resonance (EPR), which allows researchers to determine molecular structure.

"We thought we could use this EPR technique to see how inhibitors bind to IspH," Oldfield said. "But some of the early EPR spectra that Weixue got were really unusual."

To make sense of what he was seeing, Wang reviewed other studies and discovered that the unusual spectra closely resembled those seen with another enzyme, nitrogenase, which also has a metal-sulfur core and also acts as a reductase. His EPR spectra, along with data obtained using computational methods, convinced the researchers that during the chemical reaction, IspH and the compound that it reduces, HMBPP, form an intermediate that involves a highly unusual iron-carbon bond.

"People have been studying iron-sulfur clusters for 40 or 50 years," Wang said. "But they never discovered such interactions between iron and carbon in four-iron, four-sulphur proteins."

The researchers noted that a chemical compound, acetylene, blocks the activity of nitrogenase. They reasoned that this compound -- or a similar one -- might also inhibit IspH.

They made derivatives of acetylene and engineered a compound, which they call PPP, to test against IspH. Laboratory tests revealed that PPP is in fact a powerful inhibitor of IspH.

"It's one thousand times more potent than previous inhibitors," Oldfield said.

PPP has not yet been tested in cells, and much work remains to be done to develop anti-malarial or antibacterial drugs based on the new findings, Oldfield said.

"We're really at the initial, key stage, which is understanding structure and function and getting clues for inhibitors -- drug leads," he said. "But there are a finite number of proteins unique to bacteria and malaria parasites that can be targeted for the development of new drugs. And everyone agrees that this enzyme, IspH, is a tremendous target."

"The Oldfield group has uncovered completely unexpected behavior for iron-sulfur clusters," said U. of I. chemistry professor Thomas B. Rauchfuss, who was not involved in the study. "We can expect that their discovery will lead to intense follow-up studies because the results have obvious implications for both biomedicine and organometallic catalysis. Iron-sulfur clusters are found in all forms of life, so when a new function is discovered, it is big news to a wide community."

The National Institute of General Medical Sciences at the National Institutes of Health funded this research.



Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eric Oldfield et al. Bioorganometallic mechanism of action, and inhibition, of IspH. Proceedings of the National Academy of Sciences, Feb 15, 2010

Cite This Page:

University of Illinois at Urbana-Champaign. "New weapon to fight disease-causing bacteria, malaria developed." ScienceDaily. ScienceDaily, 16 February 2010. <www.sciencedaily.com/releases/2010/02/100215173944.htm>.
University of Illinois at Urbana-Champaign. (2010, February 16). New weapon to fight disease-causing bacteria, malaria developed. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/02/100215173944.htm
University of Illinois at Urbana-Champaign. "New weapon to fight disease-causing bacteria, malaria developed." ScienceDaily. www.sciencedaily.com/releases/2010/02/100215173944.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins