Featured Research

from universities, journals, and other organizations

Engineer creates unique software that predicts stem cell fate

Date:
February 23, 2010
Source:
University of Wisconsin - Milwaukee
Summary:
A completely novel approach to analyzing time-lapse images of live stem cell behaviors has yielded a tool for successfully predicting outcomes of stem and progenitor cells. It will allow scientists to search for mechanisms that control stem cell specialization, the main obstacle in advancing the use of stem cell therapy for treatment of disease.

Doctoral student Mark Winter (left) and Andrew Cohen, an assistant professor of electrical engineering, examine a color-coded "map" formed from tracking stem cell activity.
Credit: Photo by Peter Jakubowski

A software program created by an engineer at the University of Wisconsin-Milwaukee (UWM) can not only predict the types of specialized cells a stem cell will produce, but also foresee the outcome before the stem cell even divides.

The software, developed by Andrew Cohen, an assistant professor of electrical engineering, analyzes time-lapse images capturing live stem cell behaviors. It will allow scientists to search for mechanisms that control stem cell specialization, the main obstacle in advancing the use of stem cell therapy for treatment of disease. It could also lead to new research into causes of cancer, which involves cells that continuously self-renew.

Stem cells play a key role in human development, and also offer the potential to repair tissues or organs damaged by disease or injury. But, in order to use stem cell-based therapies, biologists need to better understand the mechanisms that control stem cell differentiation.

"This is a brand-new set of tools for developmental biologists," says Cohen, "and it supports an area where no other predictive solutions exist."

The research is published Feb. 7 in the journal Nature Methods. Co-authors are Michel Cayouette and Francisco Gomez neurobiologists at the Institut de recherches cliniques de Montreal, and Badri Roysam, a computer engineering professor at Rensselaer Polytechnic Institute.

The software is 87 percent accurate in determining the specific "offspring" a stem cell will ultimately produce, and 99 percent accurate in predicting when self-renewal of these stem cells will end in specialization.

A hunt for markers

As an example of the software's utility, Cohen cites using stem cells to treat the eye disease macular degeneration. The stem cells would need to produce more photoreceptor neurons for treatment to succeed. "But if you simply implant the stem cells into the retina, there are other types of cells that could develop," he says, "and that could potentially make the patient's vision worse."

Finding a solution has been hampered by the fact that there are very few markers that can predict cell division outcomes.

Subtle behaviors that characterize populations of stem cells with different fates are difficult or impossible for human observers to recognize. Cohen's tool, which runs on a standard PC, is able to track and generate predictions for up to 40 cells in real time. It outperforms the human eye in detecting differences in how the cells change over time.

Current methods of observing live cells produce terabytes of data, a volume that requires massive amounts of computation to find the most relevant information. A new computer cluster in CEAS was acquired for just this kind of research. To manage the predictive aspects of the program, Cohen used a uniquely sensitive mathematical approach based on algorithmic information theory.

Answers in DNA

Scientists know little about programming of stem cell outcomes except that it is a multifaceted process.

"In many cases, stem cells take their developmental cues from their environment," says Cohen. "Part of the programming mechanism is determined by surrounding cells. But once these cells begin to develop in a particular way, their offspring continue down that path even if the environment changes. So at some point they have been programmed to their fate."

The researchers designed the software to be used for isolating the genes and proteins that control the specialization process, which could allow researchers to identify and ultimately manipulate these programmed mechanisms.

Brian Link is a developmental biologist at the Medical College of Wisconsin who works with Cohen but is not an author on the Nature Methods paper. The two will be putting the software to the test to study behaviors of organelles within the cell as indicators of stem cell fate.

"The method isn't perfect," says Link. "It doesn't tell us about the influence of the behaviors. It tells us that a particular behavior is important, but it doesn't tell us how."

Still, the tool has already proven itself, he says. In a study of stem cells from the retinas of rats, Cohen's software independently confirmed the significance of at least one of the cell behaviors that Link's lab had previously identified using a gene manipulation technique.


Story Source:

The above story is based on materials provided by University of Wisconsin - Milwaukee. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin - Milwaukee. "Engineer creates unique software that predicts stem cell fate." ScienceDaily. ScienceDaily, 23 February 2010. <www.sciencedaily.com/releases/2010/02/100216163527.htm>.
University of Wisconsin - Milwaukee. (2010, February 23). Engineer creates unique software that predicts stem cell fate. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/02/100216163527.htm
University of Wisconsin - Milwaukee. "Engineer creates unique software that predicts stem cell fate." ScienceDaily. www.sciencedaily.com/releases/2010/02/100216163527.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins