Featured Research

from universities, journals, and other organizations

Biologists use mathematics to advance our understanding of health and disease

Date:
March 2, 2010
Source:
Virginia Tech
Summary:
Math-based computer models are a powerful tool for discovering the details of complex living systems. A Virginia biologist is creating such models to discover how cells process information and make decisions.

"We have to first understand the molecular basis of normal cell behavior; then we have a chance of figuring out how the system is broken in diseased cells," said Tyson.
Credit: Virginia Tech Photo

Math-based computer models are a powerful tool for discovering the details of complex living systems. John Tyson, professor of biology at Virginia Tech, is creating such models to discover how cells process information and make decisions.

Related Articles


"Cells receive information in the form of chemical signals, physical attachments to other cells, or radiation damage, for instance," Tyson said. "On the basis of this information, the cells must make the correct response, such as to grow and divide, or to stop growing and repair damage, or to commit suicide."

The question for a molecular biologist is: What are the underlying molecular mechanisms that implement these information processing systems? "Just as computer is an information processing system, with silicon chips, wires, mother board, clock, and power source, a cell is a an information processing system made of genes, messenger RNAs, proteins, and enzymes," Tyson said. "Somehow these molecules interact with each other to detect signals, make decisions, and implement the proper response."

Tyson and other biologists want to know how jumbles of molecules can figure out how a cell should respond to its environment in order to survive, grow, and reproduce. "So we do what any good engineer would do. We create a mathematical model of the components and their interactions, and let the computer work out the details."

Tyson presented his findings at the American Association for the Advancement of Science meeting February 18-22 in San Diego, as part of a session on "Moving Across Scales: Mathematics for Investigating Biological Hierarchies," which includes talks ranging from "HIV interventions in Africa" to the "Neural Dynamics of Decision Making." Tyson will talk about "Molecular Network Dynamics and Cell Physiology," or the cell as an information-processing system.

The speakers in this session will illustrate how math models help scientists reason across scales in biology, such as from interactions between sick and healthy people to the spread of global pandemics. Whereas models of this sort can inform public health decisions on a global scale, Tyson's research addresses basic science at the smallest scale -- bridging the gap from molecules to cells. "We have to first understand the molecular basis of normal cell behavior; then we have a chance of figuring out how the system is broken in diseased cells," said Tyson.

"What decision-making processes tell a cell when to grow and divide and when to just hang-out? It is mistakes in this decision process that cause cancer. Tumors are cells growing when and where they shouldn't. Cancer is a collection of diseases caused by faulty decision-making at the cellular level. The cells are no longer obeying the rules. We know the cause is in the molecules that are supposed to be enforcing these rules."

During the course of his research, Tyson and colleagues have used computer simulations to test their math models. "If the math model behaves in the computer the way cells behave in the lab, we gain confidence that we understand the molecular interactions correctly. If not, we can be sure that our models are missing something important."

Tyson will talk about the control of cell division in yeast and in mammalian cells. "Yeast cells are easy to work with in the lab, and their molecular control systems are very similar to the control systems in mammalian cells," he said As a result of the success that Tyson and his colleagues have had in modeling yeast cell growth and division, they are now making the transition to mammalian cells and cancer.

"We do not yet have an engineer's understanding of normal mammalian cell proliferation and of what goes wrong in cancer cells," Tyson said. "Cancer treatment is still a matter of cutting out, blasting, or poisoning cancer cells -- and any normal cells that get in the way. We could be more subtle and perhaps more effective in treating cancers if we had a systematic insider's understanding of the molecular networks that control cell growth, division and death, and an ability to manipulate this control system with a new array of drugs and procedures."


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Biologists use mathematics to advance our understanding of health and disease." ScienceDaily. ScienceDaily, 2 March 2010. <www.sciencedaily.com/releases/2010/02/100221110340.htm>.
Virginia Tech. (2010, March 2). Biologists use mathematics to advance our understanding of health and disease. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/02/100221110340.htm
Virginia Tech. "Biologists use mathematics to advance our understanding of health and disease." ScienceDaily. www.sciencedaily.com/releases/2010/02/100221110340.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins