Featured Research

from universities, journals, and other organizations

Early test for a killer of the sickest

Date:
March 4, 2010
Source:
Duke University Medical Center
Summary:
An early test for fungal infections that measures how a patient's genes are responding could save the lives of some very sick patients. Researchers have devised an early gene-expression test for the fungal pathogen Candida that worked in mice.

An early test for fungal infections that measures how a patient's genes are responding could save the lives of some very sick patients. Researchers at Duke University's Institute for Genome Sciences & Policy have devised an early gene-expression test for the fungal pathogen Candida that worked in mice.

Related Articles


It is an entirely new and more rapid way to reveal an infection which occurs in very sick or immunocompromised patients, particularly critical care patients. Candidemia can kill 10-15 percent of critically ill patients within the first 24 hours of infection. If the disease goes undetected for up to three days, the mortality rate rises to 30 percent.

Now that the gene-based test has worked well in mice, the Duke scientists are gathering human specimens to devise a similar test to be used in people.

"This study provides the basis for development a blood-gene expression test in humans to detect a life-threatening infection earlier than can be done using currently available methods," said Geoffrey Ginsburg, M.D., Ph.D., director of Duke University's Center for Genomic Medicine in the Institute for Genome Sciences & Policy, professor of medicine, and the senior author of the study. "Earlier detection will lead to earlier treatment and save lives. This work is also part of a portfolio of blood gene-expression-based tests we are developing to detect viral, bacterial and now fungal infections that will lead to more precise diagnosis and more appropriate therapies for infectious disease. This is personalized medicine."

The findings, which appear in the journal Science Translational Medicine, mark the beginning of an entirely new way of diagnosing infectious disease, said co-lead author Aimee Zaas, M.D., assistant professor of medicine in the Duke Division of Infectious Diseases and International Health, and the Duke Institute for Genome Sciences & Policy. "We are redefining the way that physicians identify infectious disease using a combination of host-based blood RNA tests with traditional microbiology methods."

One of the challenges in diagnosing candidemia is that it often appears to be similar in symptoms to other serious bloodstream infections. To discriminate whether a patient has a bloodstream fungal infection versus a bacterial infection often can take 48 to 72 hours until blood culture tests are completed and even then the results may only be positive 50 percent of the time. People most at risk for candidemia include patients hospitalized in intensive care units, those who've had abdominal surgery, those receiving antibacterial therapies, those with central line catheters, and those who are immunosuppressed.

"Our results show that this new gene-signature test works well to find candidemia in mice that had the infection versus mice without infection," said Zaas, who is also an assistant professor in the Department of Molecular Genetics and Microbiology at Duke. "We were very pleased to learn that we could further distinguish the fungal infection from a staph infection, another bloodstream disease that shares the same set of symptoms."

The team of scientists sees the findings as a jumping off point for producing gene-expression signatures to detect a number of infections. They pursued the candidemia test first because of the high mortality rate in hospitalized patients with that hard-to-treat infection.

The scientists performed an analysis of gene expression -- which genes are turned on and active -- in the blood samples of mice that were exposed to Candida albicans (C. albicans) and a group of healthy control mice. They looked at genes that are associated with immune response and found there were 20 sets of 60 to 80 genes being expressed together. One group of genes in particular distinguished the infected samples from the control samples.

Likewise, they were able to combine data from the C. albicans group with data from a group of mice infected with Staphylococcus aureus, which is sometimes found in hospitalized patients. The team identified two groups of genes that could discriminate among the three groups of mice (healthy, those with candidemia and those with a staph infection).

They also developed distinct groups of genes that correlated with samples at different time points during the course of Candida infection. Using these groups of genes, the researchers could differentiate between an early and a late infection.

Other authors include co-lead author Hamza Aziz of the Duke University School of Medicine, Joseph Lucas of the Institute for Genome Sciences & Policy, and John R. Perfect, of the Division of Infectious Diseases and International Health and the Department of Medicine. Funding for the project came from the Wallace H. Coulter Foundation and the Duke Institute of Genome Sciences & Policy.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Early test for a killer of the sickest." ScienceDaily. ScienceDaily, 4 March 2010. <www.sciencedaily.com/releases/2010/03/100303141928.htm>.
Duke University Medical Center. (2010, March 4). Early test for a killer of the sickest. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2010/03/100303141928.htm
Duke University Medical Center. "Early test for a killer of the sickest." ScienceDaily. www.sciencedaily.com/releases/2010/03/100303141928.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill Test Can Predict Chance Of Death Within A Decade

Treadmill Test Can Predict Chance Of Death Within A Decade

Newsy (Mar. 2, 2015) Johns Hopkins researchers analyzed 58,000 heart stress tests to come up with a formula that predicts a person&apos;s chances of dying in the next decade. Video provided by Newsy
Powered by NewsLook.com
Going Gluten-Free Could Get You A Tax Break

Going Gluten-Free Could Get You A Tax Break

Newsy (Mar. 2, 2015) If a doctor advises you to remove gluten from your diet, you could get a tax deduction on the amount you spend on gluten-free foods. Video provided by Newsy
Powered by NewsLook.com
GlaxoSmithKline and Novartis Try Swapping Success

GlaxoSmithKline and Novartis Try Swapping Success

Reuters - Business Video Online (Mar. 2, 2015) GlaxoSmithKline and Novartis have completed a series of asset swaps worth more than $20 billion. As Grace Pascoe reports they say the deal will reshape both drugmakers. Video provided by Reuters
Powered by NewsLook.com
How Can West Africa Rebuild After Ebola?

How Can West Africa Rebuild After Ebola?

Reuters - Business Video Online (Mar. 2, 2015) How best to rebuild the three West African countries struggling with Ebola will be discussed in Brussels this week. As Hayley Platt reports Sierra Leone has the toughest job ahead - its once thriving economy has been ravaged by the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins