Featured Research

from universities, journals, and other organizations

Pancreatic cancer study reveals mechanism initiating disease, in mice

Date:
March 15, 2010
Source:
University of California - San Francisco
Summary:
Scientists have discovered how a mutated gene known as Kras is able to hijack mouse cells damaged by acute pancreatitis, putting them on the path to becoming pancreatic cancer cells.

UCSF scientists have discovered how a mutated gene known as Kras is able to hijack mouse cells damaged by acute pancreatitis, putting them on the path to becoming pancreatic cancer cells.

The finding, they say, suggests one way in which the mutated gene -- found in nearly all cases of the most common and lethal form of pancreatic cancer -- exacts its toll in humans. It also strengthens evidence that chronic pancreatitis, which occurs when digestive enzymes become activated too soon, causing abdominal pain, indigestion and other symptoms, may be a risk factor in the development of pancreatic cancer, rather than a side effect.

The finding, says senior author Matthias Hebrok, PhD, the Hurlbut-Johnson Distinguished Professor in Diabetes Research and interim director of the UCSF Diabetes Center, could help scientists in their search for diagnostic markers in the blood of pancreatic cancer, as well as targets for therapy.

While evidence from patient tissue and mouse studies has indicated that pancreatic ductal adenocarcinoma (PDA) evolves from cells known as ductal cells -- which line the ducts through which digestive enzymes are transported from the pancreas to the small intestine -- recent studies by other labs have shown that PDA can emerge from so-called acinar cells, which produce digestive enzymes.

Subsequently, scientists in other labs have confirmed that mutated Kras can initiate the development of precursors to PDA in acinar cells. However, the findings have been puzzling, because expression of mutated Kras does not guarantee acinar reprogramming.

Given this inconsistency, scientists have hypothesized that other events in the cellular environment must occur for mutated Kras to assert itself, and recent studies have indicated that acute and chronic pancreatitis may be one such factor. When mutant Kras is active in the acinar cells of mice with chemically-induced acute pancreatitis, the development of precursors of PDA progression is accelerated.

In acute and chronic pancreatitis, acinar cells of the pancreas are persistently inflamed and injured. Under normal conditions in mouse studies, these damaged cells rapidly regenerate, in a process that involves temporarily reactivating embryonic developmental molecular signals that allow the cells to regenerate. However, in acinar cells in which mutant Kras has been activated, the embryonic developmental signals remain active, keeping the cells in a so-called "de-differentiated" state, causing them to develop into cells that are precursors to PDA.

In the current study, reported in a recent issue of The Journal of Clinical Investigation (vol. 120, issue 2, 2010), the team set out to investigate how mutant Kras co-opts the damaged acinar cells.

The investigation, led by John P. Morris IV, a graduate student in the Hebrok lab, examined two sets of mice. One set of normal, or "control" mice, was chemically induced to have acute pancreatitis. Another set of mice was genetically engineered to carry a copy of the mutated, or overactive, Kras gene, and then induced to develop acute pancreatitis.

The scientists tracked the behavior, or "fate," of the fluorescently labeled acinar cells in both sets of mice. In the normal mice, the acinar cells transiently induced embryonic signaling and regenerated as expected. However, in the genetically engineered mice, the mutant Kras gene's protein, KRAS, blocked acinar cell regeneration and promoted persistently de-differentiated PDA precursor cells.

Probing for the molecular mechanism underlying this switch, the team discovered that the mutated KRAS blocked the action of a protein know as beta catenin. They also showed that beta catenin was required for efficient acinar regeneration. Most notably, they showed that when beta-catenin's signaling pathways were forcibly maintained in the context of the KRAS mutation, acinar cells did not become PDA precursors.

"These results indicate that beta-catenin is essential for acinar regeneration," says Hebrok, a member of the UCSF Helen Diller Comprehensive Cancer Center. "They also demonstrate that beta-catenin signaling must be blocked in order for mutant Kras to exploit the plasticity of cell fate that arises during pancreatic damage and to force these de-differentiated cells to become PDA precursors."

In the absence of injury, he says, "a mutation in Kras in an acinar cell likely would not cause the cell to undergo changes leading toward cancer, or it might cause these changes at a very slow rate. But if there is a mutation in Kras in a cell that has become de-differentiated in response to acute or chronic pancreatitis, this progression toward cancer would occur relatively quickly."

The finding, he says, illuminates the fine line between regeneration and carcinogenesis in the body's cells. "Cellular plasticity is necessary to allow damaged cells to activate their embryonic programs and temporarily activate embryonic signaling pathways to regenerate themselves," says Hebrok. "But cells also need to be able to turn off these signaling pathways."

"Our study underlines the likelihood that not only must mutations be acquired in a specific sequence in order to develop PDA, but levels of developmental signaling pathways must be tightly regulated to alter normal cellular plasticity and drive neoplastic cell fates."

The finding also reveals a new role of beta catenin in cancer. While the beta catenin and KRAS proteins appear to oppose one another during tumor initiation in PDA, they work together in several types of established tumors, including later stages of pancreatic cancer.

Other co-authors of the study were David A. Cano, PhD, Shigeki Sekine MD, PhD, and Sam C. Wang, MD, all at the time in the Hebrok lab in the UCSF Diabetes Center. Cano and Sekine are now in new positions in Spain and Japan, respectively.


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. John P. Morris, David A. Cano, Shigeki Sekine, Sam C. Wang, Matthias Hebrok. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. Journal of Clinical Investigation, Volume 120, issue 2 DOI: 10.1172/JCI40045

Cite This Page:

University of California - San Francisco. "Pancreatic cancer study reveals mechanism initiating disease, in mice." ScienceDaily. ScienceDaily, 15 March 2010. <www.sciencedaily.com/releases/2010/03/100312091407.htm>.
University of California - San Francisco. (2010, March 15). Pancreatic cancer study reveals mechanism initiating disease, in mice. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/03/100312091407.htm
University of California - San Francisco. "Pancreatic cancer study reveals mechanism initiating disease, in mice." ScienceDaily. www.sciencedaily.com/releases/2010/03/100312091407.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins