Featured Research

from universities, journals, and other organizations

New microscopy technique offers close-up, real-time view of cellular phenomena

Date:
March 15, 2010
Source:
Massachusetts Institute of Technology
Summary:
For two decades, scientists have been pursuing a potential new way to treat bacterial infections, using naturally occurring proteins known as antimicrobial peptides (AMPs). Now, scientists have recorded the first microscopic images showing the deadly effects of AMPs, most of which kill by poking holes in bacterial cell membranes.

This image, taken with atomic force microscopy, shows E. coli bacteria after they have been exposed to the antimicrobial peptide CM15. The peptides have begun destroying the bacteria's cell walls.
Credit: Image by Georg Fantner

For two decades, scientists have been pursuing a potential new way to treat bacterial infections, using naturally occurring proteins known as antimicrobial peptides (AMPs). Now, MIT scientists have recorded the first microscopic images showing the deadly effects of AMPs, most of which kill by poking holes in bacterial cell membranes.

Researchers in the laboratory of MIT Professor Angela Belcher modified an existing, extremely sensitive technique known as high-speed atomic force microscopy (AFM) to allow them to image the bacteria in real time. Their method, described in Nature Nanotechnology, represents the first way to study living cells using high-resolution images recorded in rapid succession.

Using this type of high-speed AFM could allow scientists to study how cells respond to other drugs and to viral infection, says Belcher, the Germeshausen Professor of Materials Science and Engineering and Biological Engineering. The new work could also help researchers understand how some bacteria can become resistant to AMPs (none of which have been approved as drugs yet).

Atomic force microscopy, invented in 1986, is widely used to image nanoscale materials. Its resolution is similar to that of electron microscopy, but unlike electron microscopy, it does not require a vacuum and thus can be used with living samples. However, traditional AFM requires several minutes to produce one image, so it cannot record a sequence of rapidly occurring events.

In recent years, scientists have developed high-speed AFM techniques, but haven't optimized them for living cells. That's what the MIT team set out to do, building on the experience of lead author Georg Fantner, a postdoctoral associate in Belcher's lab who had worked on high-speed AFM at the University of California at Santa Barbara.

How they did it: Atomic force microscopy makes use of a cantilever equipped with a probe tip that "feels" the surface of a sample. Forces between the tip and the sample can be measured as the probe moves across the sample, revealing the shape of the surface. The MIT team used a cantilever about 1,000 times smaller than those normally used for AFM, which enabled them to increase the imaging speed without harming the bacteria.

With the new setup, the team was able to take images every 13 seconds over a period of several minutes. They found that AMP-induced cell death appears to be a two-step process: a short incubation period followed by a rapid "execution." They were surprised to see that the onset of the incubation period varied from 13 to 80 seconds.

"Not all of the cells started dying at the exact same time, even though they were genetically identical and were exposed to the peptide at the same time," says Roberto Barbero, a graduate student in biological engineering and an author of the paper.

Next steps: In the future, Belcher hopes to use atomic force microscopy to study other cellular phenomena, including the assembly of viruses in infected cells, and the effects of traditional antibiotics on bacterial cells. The technique may also prove useful in studying mammalian cells.

Funding was provided by the Erwin-Schrodinger Fellowship, National Institutes of Health, Army Research Office, Austrian Research Promotion Agency.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Anne Trafton, MIT News Office. Note: Materials may be edited for content and length.


Journal Reference:

  1. Georg Fantner, Roberto Barbero, David Gray and Angela Belcher. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotechnology, 2010; DOI: 10.1038/nnano.2010.29

Cite This Page:

Massachusetts Institute of Technology. "New microscopy technique offers close-up, real-time view of cellular phenomena." ScienceDaily. ScienceDaily, 15 March 2010. <www.sciencedaily.com/releases/2010/03/100314150920.htm>.
Massachusetts Institute of Technology. (2010, March 15). New microscopy technique offers close-up, real-time view of cellular phenomena. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2010/03/100314150920.htm
Massachusetts Institute of Technology. "New microscopy technique offers close-up, real-time view of cellular phenomena." ScienceDaily. www.sciencedaily.com/releases/2010/03/100314150920.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins