Featured Research

from universities, journals, and other organizations

Swedish scientists stop acorn barnacles

Date:
April 29, 2010
Source:
Expertanswer (Expertsvar in Swedish)
Summary:
Marine organisms that fasten to the bottoms of ships have always been a scourge to seafaring. By monitoring how the larvae of acorn barnacles go about finding suitable spots to attach themselves, researchers in Sweden have managed to design surfaces that prevent growths -- without using poisonous chemicals.

Larvae of acorn barnacles.
Credit: Image courtesy of Expertanswer

Marine organisms that fasten to the bottoms of ships have always been a scourge to seafaring. By monitoring how the larvae of acorn barnacles go about finding suitable spots to attach themselves, researchers at Linkφping University in Sweden have managed to design surfaces that prevent growths -- without using poisonous chemicals.

Acorn barnacles, which are animals, are among the most notorious stowaways at sea. A vessel with its hull covered by their hard calcium shells moves more slowly and uses more fuel.

The most common method to prevent surface fouling is to apply toxic hull paint. The most effective substance has been tributhyl tin (TBT), which is now totally banned. But until now no really good alternatives to toxic paint have been found.

"Our strategy, instead, is to design surfaces that the barnacle glue doesn't stick to. The idea is for the larvae to swim off and find another place to fasten themselves for the rest of their lives," says Tobias Ekblad, a doctoral candidate in molecular physics and an associate in the EU project AMBIO.

To study how a larva walks around on its 'feet' -- actually the front parts of a couple of antennae -- and leaves micrometer-size footprints, the scientists make use of so-called surface plasmon resonance. This measurement method, based on electromagnetic wave movements in the interface between the surface and sea water, can detect the minimal optical changes that occur when the thin (10 millionths of a millimeter) footprints are made. In this way they can see in real time how the prints occur and monitor their movements back and forth across the surface.

The findings presented in Tobias Ekblad's thesis show that what determines whether the larvae like a surface or not is chemistry. Ekblad has developed a method to cover a material with a thin layer of water-filled gel, a hydrogel, that has been tested with different chemical components. For example, layers containing the polymer polyethylene glycol (PEG) have been shown to yield excellent results.

The researchers have also studied the effect of how blood coagulates on various surfaces, a problem that is encountered when prostheses are operated into the body. As in the barnacle growth project, they have found that the usable materials are those that dramatically decrease the binding of proteins to the surface.


Story Source:

The above story is based on materials provided by Expertanswer (Expertsvar in Swedish). Note: Materials may be edited for content and length.


Cite This Page:

Expertanswer (Expertsvar in Swedish). "Swedish scientists stop acorn barnacles." ScienceDaily. ScienceDaily, 29 April 2010. <www.sciencedaily.com/releases/2010/03/100315230916.htm>.
Expertanswer (Expertsvar in Swedish). (2010, April 29). Swedish scientists stop acorn barnacles. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/03/100315230916.htm
Expertanswer (Expertsvar in Swedish). "Swedish scientists stop acorn barnacles." ScienceDaily. www.sciencedaily.com/releases/2010/03/100315230916.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins