Featured Research

from universities, journals, and other organizations

Stem cell networks in zebrafish

Date:
March 19, 2010
Source:
Albert-Ludwigs-Universität Freiburg
Summary:
Embryonic stem cells (ES cells) have invaluable potential for regenerative medicine. Scientists are only just beginning to understand the diverse developmental possibilities ("pluripotency") of ES cells. The Pou5f1/Oct4 protein is one of the most important stem cell factors. However, in contrast to Pou5f1/Oct4 itself, little is known about the structure and function of the regulatory network it controls.

Embryonic stem cells (ES cells) have invaluable potential for regenerative medicine. Scientists are only just beginning to understand the diverse developmental possibilities ("pluripotency") of ES cells. The Pou5f1/Oct4 protein is one of the most important stem cell factors. However, in contrast to Pou5f1/Oct4 itself, little is known about the structure and function of the regulatory network it controls.

This network can support pluripotency, but at the same time it can also enable the allocation of embryonic cells to the various main cell lines. Using the zebrafish as an experimental model, a team of systems biologists from the University of Freiburg led by Prof. Dr. Wolfgang Driever and Dr. Daria Onichtchouk from the Faculty of Biology and Prof. Dr. Jens Timmer from the Institute of Physics has successfully implemented a systems biological approach combining embryology, bioinformatics, and mathematical modeling to explain the basic regulatory mechanisms of the early embryonic gene regulation networks. The team cooperated closely with the university's Center for Systems Biology (ZBSA). The results were published on 9 March 2010 in the journal Molecular Systems Biology.

Stem cells have the potential to become one of the essential therapeutic components in biomedicine for curing the degeneration diseases of an aging society. However, the diverse developmental possibilities of embryonic stem cells also present considerable risks: How can we ensure that the cells we create from stem cells are stable and do not lead to tumors? One of the preconditions for preventing this from happening is a better understanding of the successive steps of regulation in the natural differentiation of stem cells into defined tissue in the embryo. This process of differentiation is controlled by complex networks of regulators and signals in a series of successive regulation phases. It is difficult to study these steps in cell cultures and in the mammal embryo because the steps of differentiation often occur asynchronously in temporal succession (cell culture) and the corresponding developmental stages are not easy to access through experimental means (embryo).

The team of system biologists tackled and threw light on important aspects of precisely this regulation network in their study. The decisive step for reaching a more profound understanding of the regulation process consisted in conducting detailed time-resolved analyses of the embryonic transcriptome of wild type embryos and Oct4/Pou5f1-deficient embryos at 10 distinct time points during development. The results of this biological modeling process provide insight not only into the temporal dynamic of the stem cell network, but also into its structure, function, and evolution.

In addition to Prof. Dr. Wolfgang Driever, Dr. Daria Onichtchouk, and Prof. Dr. Jens Timmer, the research team included Dr. Florian Geier, Dr. Bozena Polock, Dr. Björn Wendik, Sungmin Song, and Rebecca Mössner from the University of Freiburg as well as Dr. Verdon Taylor and Dr. Daniel Messerschmidt from the Freiburg Max Planck Institute. Wolfgang Driever and Jens Timmer are Internal Senior Fellows of the Freiburg Institute for Advanced Studies (FRIAS).


Story Source:

The above story is based on materials provided by Albert-Ludwigs-Universität Freiburg. Note: Materials may be edited for content and length.


Journal Reference:

  1. Onichtchouk et al. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Molecular Systems Biology, 2010; 6 DOI: 10.1038/msb.2010.9

Cite This Page:

Albert-Ludwigs-Universität Freiburg. "Stem cell networks in zebrafish." ScienceDaily. ScienceDaily, 19 March 2010. <www.sciencedaily.com/releases/2010/03/100319210440.htm>.
Albert-Ludwigs-Universität Freiburg. (2010, March 19). Stem cell networks in zebrafish. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/03/100319210440.htm
Albert-Ludwigs-Universität Freiburg. "Stem cell networks in zebrafish." ScienceDaily. www.sciencedaily.com/releases/2010/03/100319210440.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins