Featured Research

from universities, journals, and other organizations

Ultra-short, high-density electron pulses for advanced X-ray sources

Date:
April 12, 2010
Source:
Forschungszentrum Dresden Rossendorf
Summary:
Over the last few years interest has grown in compact X-ray laser sources which do not require the use of large particle accelerators. Instead, high-intensity laser light is used to accelerate ultra-short, high-density electron pulses to drive these advanced sources. Scientists have now measured the duration of these electron pulses precisely.

Visualization of the electron density (black: no electrons, red: few electrons, light color: many electrons). In order to generate brilliant x-ray radiation ultra-short electron pulses of high density are required. Such a beam is depicted in the top figure: The laser pulse is shown on the right, followed by a black, circular area void of any electrons. In the left part of this area the high-density electron pulse can be seen. Bottom: Corresponding electric fields accelerating the electron pulse (green: no field, blue: negative field, red: positive field).

Over the last few years interest has grown in compact X-ray laser sources which do not require the use of large particle accelerators. Instead, high-intensity laser light is used to accelerate ultra-short, high-density electron pulses to drive these advanced sources. In an international cooperation scientists from Forschungszentrum Dresden-Rossendorf (FZD) have measured the duration of these electron pulses precisely.

Their results were published in the journal Physical Review Letters.

Small, compact, low-cost, laser-like X-ray light sources that fit on a table are one of the dreams of researchers who want to take a glimpse into the microscopic world of cells, molecules and atoms. These sources must be driven by high-energy electrons, which are as yet only available at large-scale accelerator facilities such as "LCLS" in Stanford, USA, or the European X-ray laser facility "XFEL" currently built at DESY, Germany. Light produced by these advanced X-ray sources is similar to laser light and thus very different from the X-ray light commonly used for example by doctors. One of the outstanding properties of this new kind of X-ray light is its spatial coherence, which means that the light waves emitted oscillate in the same manner.

In the last few years research on a compact alternative to generate brilliant X-ray radiation has drawn attention to the use of laser light: An intense, ultra-short laser can accelerate electrons to energies as high as those available at large accelerator facilities. Despite the great progress in this field, up until now scientists could only assume that the electron pulses are indeed short enough to be applicable for these advanced radiation sources.

This property of laser-generated electron pulses which is essential for the success of the new technology has now been verified by Alexander Debus from Forschungszentrum Dresden-Rossendorf (FZD). Using experimental data taken by German and British scientists at the ASTRA laser at the Rutherford Appleton Laboratory in Rutherford/England, he reconstructed the properties of laser-accelerated electron bunches by computer simulation. He was able to determine the electron pulse duration to 30 femtoseconds (1 femtosecond is one quadrillion of a second). These electron pulses are extremely short, shorter than the laser pulse of 45 femtoseconds used in the experiment. "This result puts the development of advanced X-ray light sources based on ultra-short electron pulses of high charge, i.e. with a high number of electrons, on a sound foundation," says FZD scientist Dr. Michael Bussmann.

Electron pulses are created when an ultra-short, intense laser pulse interacts with a gas. The laser pulse is strong enough to turn the gas into plasma, destroying the close bonds between the gas atoms and their electrons. A plasma wake is created which trails the laser pulse at almost the speed of light. Electrons surf on this plasma wake like a surfer on an ocean wave and are accelerated to high energies.

At FZD it will soon be possible to generate X-ray radiation using both electron pulses accelerated by the high-intensity laser DRACO and from the radiation source ELBE. The electrons will be brought in overlap with a strong laser pulse, causing the electrons to oscillate and emit X-ray radiation. According to FZD scientist Michael Bussmann advanced laser-driven X-ray sources could be considerably smaller than current facilities because the acceleration length can be drastically reduced.

The experiments were carried out in cooperation with the following institutes: University of Oxford, Max Planck Institute for Quantum Optics, Ludwig-Maximilians-Universität, Munich, Imperial College London, STFC Daresbury Laboratory, University of Strathclyde, Friedrich Schiller University of Jena, Heinrich Heine Universität, Düsseldorf, STFC Rutherford Appleton Laboratory.


Story Source:

The above story is based on materials provided by Forschungszentrum Dresden Rossendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. D. Debus, M. Bussmann, U. Schramm, R. Sauerbrey, C. D. Murphy, Zs. Major, R. Hörlein, L. Veisz, K. Schmid, J. Schreiber, K. Witte, S. P. Jamison, J. G. Gallacher, D. A. Jaroszynski, M. C. Kaluza, B. Hidding, S. Kiselev, R. Heathcote, P. S. Foster, D. Neely, E. J. Divall, C. J. Hooker, J. M. Smith, K. Ertel, A. J. Langley, P. Norreys, J. L. Collier, S. Karsch. Electron Bunch Length Measurements from Laser-Accelerated Electrons Using Single-Shot THz Time-Domain Interferometry. Physical Review Letters, 2010; 104 (8): 084802 DOI: 10.1103/PhysRevLett.104.084802

Cite This Page:

Forschungszentrum Dresden Rossendorf. "Ultra-short, high-density electron pulses for advanced X-ray sources." ScienceDaily. ScienceDaily, 12 April 2010. <www.sciencedaily.com/releases/2010/03/100331081126.htm>.
Forschungszentrum Dresden Rossendorf. (2010, April 12). Ultra-short, high-density electron pulses for advanced X-ray sources. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/03/100331081126.htm
Forschungszentrum Dresden Rossendorf. "Ultra-short, high-density electron pulses for advanced X-ray sources." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331081126.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins