Featured Research

from universities, journals, and other organizations

Hold the salt: Engineers develop revolutionary new desalination membrane

Date:
June 7, 2010
Source:
University of California - Los Angeles
Summary:
Researchers have unveiled a new class of reverse-osmosis membranes for desalination that resist the clogging which typically occurs when seawater, brackish water and waste water are purified. The highly permeable, surface-structured membrane can easily be incorporated into today's commercial production system, the researchers say, and could help to significantly reduce desalination operating costs.

Salt stacks at a desalination plant in Trapani, Sicily (Italy).
Credit: iStockphoto/Beat Bieler

Researchers from the UCLA Henry Samueli School of Engineering and Applied Science have unveiled a new class of reverse-osmosis membranes for desalination that resist the clogging which typically occurs when seawater, brackish water and waste water are purified.

The highly permeable, surface-structured membrane can easily be incorporated into today's commercial production system, the researchers say, and could help to significantly reduce desalination operating costs. Their findings appear in the current issue of the Journal of Materials Chemistry.

Reverse-osmosis (RO) desalination uses high pressure to force polluted water through the pores of a membrane. While water molecules pass through the pores, mineral salt ions, bacteria and other impurities cannot. Over time, these particles build up on the membrane's surface, leading to clogging and membrane damage. This scaling and fouling places higher energy demands on the pumping system and necessitates costly cleanup and membrane replacement.

The new UCLA membrane's novel surface topography and chemistry allow it to avoid such drawbacks.

"Besides possessing high water permeability, the new membrane also shows high rejection characteristics and long-term stability," said Nancy H. Lin, a UCLA Engineering senior researcher and the study's lead author. "Structuring the membrane surface does not require a long reaction time, high reaction temperature or the use of a vacuum chamber. The anti-scaling property, which can increase membrane life and decrease operational costs, is superior to existing commercial membranes."

The new membrane was synthesized through a three-step process. First, researchers synthesized a polyamide thin-film composite membrane using conventional interfacial polymerization. Next, they activated the polyamide surface with atmospheric pressure plasma to create active sites on the surface. Finally, these active sites were used to initiate a graft polymerization reaction with a monomer solution to create a polymer "brush layer" on the polyamide surface. This graft polymerization is carried out for a specific period of time at a specific temperature in order to control the brush layer thickness and topography.

"In the early years, surface plasma treatment could only be accomplished in a vacuum chamber," said Yoram Cohen, UCLA professor of chemical and biomolecular engineering and a corresponding author of the study. "It wasn't practical for large-scale commercialization because thousands of meters of membranes could not be synthesized in a vacuum chamber. It's too costly. But now, with the advent of atmospheric pressure plasma, we don't even need to initiate the reaction chemically. It's as simple as brushing the surface with plasma, and it can be done for almost any surface."

In this new membrane, the polymer chains of the tethered brush layer are in constant motion. The chains are chemically anchored to the surface and are thus more thermally stable, relative to physically coated polymer films. Water flow also adds to the brush layer's movement, making it extremely difficult for bacteria and other colloidal matter to anchor to the surface of the membrane.

"If you've ever snorkeled, you'll know that sea kelp move back and forth with the current or water flow," Cohen said. "So imagine that you have this varied structure with continuous movement. Protein or bacteria need to be able to anchor to multiple spots on the membrane to attach themselves to the surface -- a task which is extremely difficult to attain due to the constant motion of the brush layer. The polymer chains protect and screen the membrane surface underneath."

Another factor in preventing adhesion is the surface charge of the membrane. Cohen's team is able to choose the chemistry of the brush layer to impart the desired surface charge, enabling the membrane to repel molecules of an opposite charge.

The team's next step is to expand the membrane synthesis into a much larger, continuous process and to optimize the new membrane's performance for different water sources.

"We want to be able to narrow down and create a membrane selection system for different water sources that have different fouling tendencies," Lin said. "With such knowledge, one can optimize the membrane surface properties with different polymer brush layers to delay or prevent the onset of membrane fouling and scaling.

"The cost of desalination will therefore decrease when we reduce the cost of chemicals [used for membrane cleaning], as well as process operation [for membrane replacement]. Desalination can become more economical and used as a viable alternate water resource."

Cohen's team, in collaboration with the UCLA Water Technology Research (WaTeR) Center, is currently carrying out specific studies to test the performance of the new membrane's fouling properties under field conditions.

"We work directly with industry and water agencies on everything that we're doing here in water technology," Cohen said. "The reason for this is simple: If we are to accelerate the transfer of knowledge technology from the university to the real world, where those solutions are needed, we have to make sure we address the real issues. This also provides our students with a tremendous opportunity to work with industry, government and local agencies."

A paper providing a preliminary introduction to the new membrane also appeared in the Journal of Membrane Science last month.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Wileen Wong Kromhout. Note: Materials may be edited for content and length.


Journal References:

  1. Nancy H. Lin, Myung-man Kim, Gregory T. Lewis, Yoram Cohen. Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance. Journal of Materials Chemistry, 2010; DOI: 10.1039/b926918e
  2. Myung-man Kim, Nancy H. Lin, Gregory T. Lewis, Yoram Cohen. Surface nano-structuring of reverse osmosis membranes via atmospheric pressure plasma-induced graft polymerization for reduction of mineral scaling propensity. Journal of Membrane Science, 2010; DOI: 10.1016/j.memsci.2010.02.053

Cite This Page:

University of California - Los Angeles. "Hold the salt: Engineers develop revolutionary new desalination membrane." ScienceDaily. ScienceDaily, 7 June 2010. <www.sciencedaily.com/releases/2010/04/100406093636.htm>.
University of California - Los Angeles. (2010, June 7). Hold the salt: Engineers develop revolutionary new desalination membrane. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/04/100406093636.htm
University of California - Los Angeles. "Hold the salt: Engineers develop revolutionary new desalination membrane." ScienceDaily. www.sciencedaily.com/releases/2010/04/100406093636.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins