Featured Research

from universities, journals, and other organizations

Using fullerenes as a 'cushion' for nanoparticles

Date:
April 17, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
Nanoparticles are recognized as promising building blocks for future applications, however their fixation on surfaces or in a matrix is everything else than a simple task. Now physicists have observed that a double layer of spherical C60 carbon-molecules, called fullerenes, is an ideal substrate for these microscopic particles. Their results are an important step towards the application of tailor-made nanosystems.

Nanoparticles are recognized as promising building blocks for future applications, however their fixation on surfaces or in a matrix is everything else than a simple task. Now physicists have observed that a double layer of spherical C60 carbon-molecules, called fullerenes, is an ideal substrate for these microscopic particles. Their results, recently published in Nature Nanotechnology, are an important step towards the application of tailor-made nanosystems.

The properties of nanoparticles often differ from those of a large piece made of the same material. By tuning the size and composition of the nanoparticles, one can 'tailor' their chemical, optical or magnetic properties, and obtain features different from any bulk material. But for an application of this potential in the fields of catalysis, magnetic storage technology or optoelectronics, one has to fix the nanoparticles on surfaces or in matrixes. During this process the interaction with the surface or matrix at the worst destroys the unique properties of the nanoparticles.

Therefore it is important to develop techniques for a 'gentle' yet secure fixation of nanoparticles. This was now achieved by a team of physicists from the TU Dortmund, the University of Freiburg and the Fraunhofer Institute for Mechanics of Materials IWM, who deposited the particles on a layer of spherical C60 carbon-molecules, called fullerenes, and investigated their properties.

They showed that a double layer of fullerenes on a metal surface is an ideal substrate for the fixation of nanoparticles. The size and shape of the particles stayed unchanged for days even at room temperature, which is 'hot' for nanoscale processes. On a single layer of fullerenes, however, the particles shrank fast and disappeared within a few hours. Using atomic simulations this was traced back to temporary contacts bridging the fullerene layer and transporting atoms from the nanoparticles to the supporting metal surface.

On the basis of these results it might be possible, for example, to control the contact between nanoparticles by thin films which can either be penetrated or stay isolating. The scientists therefore not only demonstrated how to fix nanoparticles on surfaces without destruction of their geometric structure, but in particular they characterized a decay process for nanoparticles by the penetration of nanoscopic barriers in detail. These findings improve significantly the understanding of nanoparticle stability, which is an important step towards the application of tailor-made nanosystems.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefanie Duffe, Niklas Grφnhagen, Lukas Patryarcha, Benedikt Sieben, Chunrong Yin, Bernd von Issendorff, Michael Moseler, Heinz Hφvel. Penetration of thin C60 films by metal nanoparticles. Nature Nanotechnology, 2010; DOI: 10.1038/nnano.2010.45

Cite This Page:

Fraunhofer-Gesellschaft. "Using fullerenes as a 'cushion' for nanoparticles." ScienceDaily. ScienceDaily, 17 April 2010. <www.sciencedaily.com/releases/2010/04/100412112901.htm>.
Fraunhofer-Gesellschaft. (2010, April 17). Using fullerenes as a 'cushion' for nanoparticles. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2010/04/100412112901.htm
Fraunhofer-Gesellschaft. "Using fullerenes as a 'cushion' for nanoparticles." ScienceDaily. www.sciencedaily.com/releases/2010/04/100412112901.htm (accessed September 24, 2014).

Share This



More Matter & Energy News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) — Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) — A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) — An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) — The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins