Featured Research

from universities, journals, and other organizations

Sharing the load: Individual fibrin fibers distribute strain across a network in blood clots

Date:
April 21, 2010
Source:
Cell Press
Summary:
A new study shows that when it comes to networks of protein fibers, individual fibers play a substantial role in effectively strengthening an entire network of fibers in blood clots. The research describes a mechanism that explains how individual fibrin fibers subjected to significant strain can respond by stiffening to resist stretch and helping to equitably distribute the strain load across the network.

A new study shows that when it comes to networks of protein fibers, individual fibers play a substantial role in effectively strengthening an entire network of fibers. The research, published by Cell Press in the April 20th issue of the Biophysical Journal, describes a mechanism that explains how individual fibrin fibers subjected to significant strain can respond by stiffening to resist stretch and helping to equitably distribute the strain load across the network.

Related Articles


Fibrin is a fibrous protein that assembles into a remarkably strong mesh-like network and forms the structural framework of a blood clot. Failure of a clot can have fatal consequences. For example, if a portion of the clot breaks away and is carried downstream by the flowing blood, it can cause a stroke or heart attack. Although previous research has characterized the mechanical properties and behavior of fibrin networks on a macroscopic level, much less is known about the behavior of individual fibrin fibers and the distribution of strain from one fiber to the next.

"We know that network strength is determined in part by the maximum strain individual fibers can withstand, so it is of particular interest to determine how the high strain and failure characteristics of single fibrin fibers affect the overall strength of the network," says senior study author Dr. Michael R. Falvo from the Department of Physics and Astronomy at the University of North Carolina at Chapel Hill. "Further, determining how strain is shared among the constituent fiber segments in a network under imposed stress is crucial to understanding failure modes of networks and their strength."

Dr. Falvo and colleagues used a combined fluorescence/atomic force microscope nanomanipulation system to stretch two dimensional fibrin networks to the point of failure while recording the strain of individual fibers. "Specifically, we observed that as fibers were stretched, they became stiffer than the surrounding fibers at lower strains; this allowed the more strained, stiffer fibers, to distribute the strain load to the less strained fibers and reduce strain concentrations," explains Dr. Falvo. "So in effect, strain stiffening in the individual fibers acts to distribute strain equitably throughout the network and thereby strengthen it."

The strain concentration reduction effect described in this study may be part of an important physiological mechanism to strengthen blood clots under high shear conditions in the blood stream. The authors note that along with this physiological insight, their findings bring about a better understanding of this remarkable strengthening mechanism and may help to guide new design strategies for engineered materials.

Researchers include Nathan E. Hudson, University of North Carolina at Chapel Hill, Chapel Hill, NC; John R. Houser, University of North Carolina at Chapel Hill, Chapel Hill, NC; E. Timothy O'Brien, University of North Carolina at Chapel Hill, Chapel Hill, NC; Russell M. Taylor Jr., University of North Carolina at Chapel Hill, Chapel Hill, NC; Richard Superfine, University of North Carolina at Chapel Hill, Chapel Hill, NC; Susan T. Lord, University of North Carolina at Chapel Hill, Chapel Hill, NC; and Michael R. Falvo, University of North Carolina at Chapel Hill, Chapel Hill, NC.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nathan E. Hudson, John R. Houser, E. Timothy O'Brien, Russell M. Taylor, Richard Superfine, Susan T. Lord, Michael R. Falvo. Stiffening of Individual Fibrin Fibers Equitably Distributes Strain and Strengthens Networks. Biophysical Journal, 2010; 98 (8): 1632 DOI: 10.1016/j.bpj.2009.12.4312

Cite This Page:

Cell Press. "Sharing the load: Individual fibrin fibers distribute strain across a network in blood clots." ScienceDaily. ScienceDaily, 21 April 2010. <www.sciencedaily.com/releases/2010/04/100420132830.htm>.
Cell Press. (2010, April 21). Sharing the load: Individual fibrin fibers distribute strain across a network in blood clots. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/04/100420132830.htm
Cell Press. "Sharing the load: Individual fibrin fibers distribute strain across a network in blood clots." ScienceDaily. www.sciencedaily.com/releases/2010/04/100420132830.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins