Featured Research

from universities, journals, and other organizations

Putting bacterial antibiotic resistance into reverse

Date:
April 28, 2010
Source:
Federation of American Societies for Experimental Biology
Summary:
The use of antibiotics to treat bacterial infections causes a continual and vicious cycle that leads to the emergence and spread of resistant strains. What if it didn't have to be this way? One researcher explains how it could work.

The use of antibiotics to treat bacterial infections causes a continual and vicious cycle in which antibiotic treatment leads to the emergence and spread of resistant strains, forcing the use of additional drugs leading to further multi-drug resistance.

But what if it doesn't have to be that way?

In a presentation at the American Society for Biochemistry and Molecular Biology's annual meeting, titled "Driving backwards the evolution of antibiotic resistance," Harvard researcher Roy Kishony discussed his recent work showing that some drug combinations can stop or even reverse the normal trend, favoring bacteria that do not develop resistance.

"Normally, when clinicians administer a multi-drug regimen, they do so because the drugs act synergistically and speed up bacterial killing," Kishony explains. However, Kishony's laboratory has focused on the opposite phenomenon: antibiotic interactions that have a suppressive effect, namely when the combined inhibitory effect of using the two drugs together is weaker than that of one of the drugs alone.

Kishony and his team identified the suppressive interaction in E. coli, discovering that a combination of tetracycline -- which prevents bacteria from making proteins -- and ciprofloxacin -- which prevents them from copying their DNA -- was not as good as slowing down bacterial growth as one of the antibiotics (ciprofloxacin) by itself.

Kishony notes that this suppressive interaction can halt bacterial evolution, because any bacteria that develop a resistance to tetracycline will lose its suppressive effect against ciprofloxacin and die off; therefore, in a population the bacteria that remain non-resistant become the dominant strain.

While such a weakened antibiotic combination is not great from a clinical standpoint, the Kishony lab is using this discovery to set up a drug screening system that could identify novel drug combinations that could hinder the development of resistance but still act highly effectively. "Typical drug searches look for absolute killing effects, and choose the strongest candidates," he says. "Our approach is going to ask how these drugs affect the competition between resistant versus sensitive bacterial strains."

To develop such a screen, Kishony and his group first had to figure how this unusual interaction works.

"Fast growing bacteria like E. coli are optimized to balance their protein and DNA activity to grow and divide as quickly as the surrounding environment allows," Kishony explains. "However, when we exposed E. coli to the ciprofloxacin, we found that their optimization disappeared."

"We expected that since the bacteria would have more difficulty copying DNA, they would slow down their protein synthesis, too," Kishony continues. "But they didn't; they kept churning out proteins, which only added to their stress." However, once they added the tetracycline and protein synthesis was also reduced in the E. coli, they actually grew better than before. They then confirmed the idea that production of ribosomes -- the cell components that make proteins -- is too high under DNA stress by engineering E. coli strains that have fewer ribosomes than regular bacteria. While these mutants grew a more slowly in normal conditions, they grew faster under ciprofloxacin inhibition of DNA synthesis.

Kishony notes that their preliminary work on the development of a screen for drugs that put resistance in a disadvantage looks promising, and hopes that it would lead to the identification of novel drugs that select against resistance.


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Cite This Page:

Federation of American Societies for Experimental Biology. "Putting bacterial antibiotic resistance into reverse." ScienceDaily. ScienceDaily, 28 April 2010. <www.sciencedaily.com/releases/2010/04/100426072125.htm>.
Federation of American Societies for Experimental Biology. (2010, April 28). Putting bacterial antibiotic resistance into reverse. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/04/100426072125.htm
Federation of American Societies for Experimental Biology. "Putting bacterial antibiotic resistance into reverse." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426072125.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins