Featured Research

from universities, journals, and other organizations

How shape-memory materials remember

Date:
April 26, 2010
Source:
American Physical Society
Summary:
X-ray analysis and new computations are helping to explain how shape-memory materials, which change shape in response various types of signals, work at the microscopic level.

X-ray studies and fundamental calculations are helping physicists gain molecular level insight into the workings of some magnetic shape-memory materials, which change shape under the influence magnetic fields. Shape-memory materials could potentially serve as light weight, compact alternatives to conventional motors and actuators. But developing practical devices will require creating materials that exhibit much larger changes in shape than most of the known shape-memory materials.

A paper appearing in the April 25 issue of Physical Review Letters reports on the efforts of a team of Japanese physicists who probed the changes in a magnetic shape-memory material at the molecular scale. The work is highlighted with a Viewpoint article by Antoni Planes (Universitat de Barcelona) in the April 25 edition of APS Physics.

The new research focused on a shape-memory alloy made up of nickel, manganese and tin. In its ideal form, the alloy is a crystal with each element occupying specific crystal locations relative to one another. In some versions, however, excess manganese atoms replace some of the tin atoms. Although the compositional change is slight, it can have significant effects on the alloy's behavior. X-ray spectroscopy allowed the researchers to observe the microscopic characteristics of the alloy to see precisely how the excess manganese atoms affect the alloy's behavior.

By studying the way that composition affects a shape-memory material, and comparing measurements to theoretical calculations, it will be possible to understand what makes the materials work, and allow physicists to develop new and improved varieties shape-changing metals.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Journal References:

  1. M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima, and T. Kanomata. Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1 xSn1-x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation. Phys. Rev. Lett., 104, 176401 (2010) Published April 26, 2010 [link]
  2. Antoni Planes. Controlling the martensitic transition in Heusler shape-memory materials. Phys. Rev. Lett., 104, 176401 (2010) DOI: 10.1103/Physics.3.36

Cite This Page:

American Physical Society. "How shape-memory materials remember." ScienceDaily. ScienceDaily, 26 April 2010. <www.sciencedaily.com/releases/2010/04/100426113141.htm>.
American Physical Society. (2010, April 26). How shape-memory materials remember. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/04/100426113141.htm
American Physical Society. "How shape-memory materials remember." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426113141.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins