Featured Research

from universities, journals, and other organizations

New requirements for male fertility

Date:
April 27, 2010
Source:
Journal of Clinical Investigation
Summary:
Two independent groups of researchers have identified distinct roles for two proteins in a family of proteins known as PLA2s as crucial for sperm function and fertility in mice. These data identify proteins that could underlie causes of human infertility and provide potential targets for the development of new contraceptive agents and new approaches to treating infertility.

Two independent groups of researchers have identified distinct roles for two proteins in a family of proteins known as PLA2s as crucial for sperm function and fertility in mice. These data identify proteins that could underlie causes of infertility and provide potential targets for the development of new contraceptive agents and new approaches to treating infertility.

In addition, these data provide a caution to those developing drugs that target members of this closely related group of proteins to treat hardening of the arteries (atherosclerosis) and inflammation.

The team of researchers led by Makoto Murakami, at The Tokyo Metropolitan Institute of Medical Science, Japan, found that sPLA2-III was expressed in a region of the testis known as the proximal epididymal epithelium. Mice lacking this protein had substantially decreased fertility because their sperm did not mature properly. Specifically, the defects in maturation meant that the sperm showed decreased motility and decreased ability to fertilize eggs in vitro.

In the second study, Christophe Arnoult and colleagues, at Grenoble Institute of Neuroscience, France, found in mice that group X secreted PLA2 (also known as mGX) was a predominant constituent of a compartment in sperm known as the acrosome. This compartment has a key role in breaking down the coat that surrounds an egg so that the sperm can elicit fertilization. Consistent with this, male mice lacking mGX produced smaller litters than did normal male mice and sperm from the mGX-deficient mice were not efficient at fertilizing eggs in vitro. Further, molecules that inhibited mGX and molecules that more broadly inhibited secreted PLA2s each reduced the efficiency of in vitro fertilization (IVF). By contrast, the presence of additional mGX improved the efficiency of IVF.

The research appears in the Journal of Clinical Investigation.


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal References:

  1. hiroyasu Sato, Yoshitaka Taketomi, Yuki Isogai, Yoshimi Miki, Kei Yamamoto, Seiko Masuda, Tomohiko Hosono, Satoru Arata, Yukio Ishikawa, Toshiharu Ishii, Tetsuyuki Kobayashi, Hiroki Nakanishi, Kazutaka Ikeda, Ryo Taguchi, Shuntaro Hara, Ichiro Kudo and Makoto Murakami. Group III secreted phospholipase A2 regulates epididymal sperm maturation and fertility in mice. Journal of Clinical Investigation, 2010; DOI: 10.1172/JCI40493
  2. Jessica Escoffier, Ikram Jemel, Akemi Tanemoto, Yoshitaka Taketomi, Christine Payre, Christelle Coatrieux, Hiroyasu Sato, Kei Yamamoto, Seiko Masuda, Karin Pernet-Gallay, Virginie Pierre, Shuntaro Hara, Makoto Murakami, Michel De Waard, Gιrard Lambeau, and Christophe Arnoult. Group X phospholipase A2 is released during sperm acrosome reaction and controls fertility outcome in mice. Journal of Clinical Investigation, 2010; DOI: 10.1172/JCI40494

Cite This Page:

Journal of Clinical Investigation. "New requirements for male fertility." ScienceDaily. ScienceDaily, 27 April 2010. <www.sciencedaily.com/releases/2010/04/100426181710.htm>.
Journal of Clinical Investigation. (2010, April 27). New requirements for male fertility. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/04/100426181710.htm
Journal of Clinical Investigation. "New requirements for male fertility." ScienceDaily. www.sciencedaily.com/releases/2010/04/100426181710.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) — Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) — More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) — Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) — Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins