Featured Research

from universities, journals, and other organizations

Scientists alter developing fish brain to resemble that of another species

Date:
May 4, 2010
Source:
Georgia Institute of Technology
Summary:
Biologists have been able to change the brain of a developing fish embryo to resemble that of another species.

Biologist J. Todd Streelman and his research team were able to alter the brain of an embryonic fish, known as a cichlid, to resememble that of another cichlid species.
Credit: J. Todd Streelman

Scientists at the Georgia Institute of Technology have found that by applying chemicals to manipulate genes in a developing embryo, they've been able to change the brain of one type of cichlid fish to resemble that of another. The researchers also discovered differences in the general patterning of the brain very early in development before functional neurons form in a process known as neurogenesis. This finding is at odds with a well-held theory known as "late equals large."

The research appears in the Proceedings of the National Academy of Sciences.

In the mid 1990s, the hypothesis called "late equals large" was put forth to explain the way brains evolve across species. The brain begins as a blank slate. In early development, the anterior, or front, part of the brain is specified from the posterior, or back, part. After that, neurogenesis occurs as precursor cells mature to become neurons. These precursors can replicate endlessly, but once they become functional neurons, replication ends. The later the switch from precursors to mature neurons, the larger the brain, or brain region, becomes. The "late equals large" model holds that the brains of different species, for example humans vs. mice, are similar early in development and differ because of the later process of neurogenesis.

"We found differences in the general patterning of the brain as early as 48 hours after fertilization, before neurogenesis begins," said J. Todd Streelman, associate professor in Georgia Tech's School of Biology.

Streelman, Ph.D. student Jonathan Sylvester, and their colleagues studied brain development in six species of cichlid from Lake Malawi stock, three species from the rock-dwelling lineage and three species of their sand-dwelling cousins.

"We repeated our tests from two to four days after fertilization and found that sand-dwelling cichlids exhibited a larger expression domain of the gene wnt1, known to be an important factor in the development of the posterior brain. This correlates with a larger thalamus, a posterior forebrain structure used in the processing of vision," said Sylvester.

The sand-dwelling cichlids use their vision to detect plankton prey, so their brains are heavily devoted to integrating visual signals. However, the rock-dwelling species feed by scraping algae from rocks and possess larger cerebra, or telencephala, perhaps to aid in navigating their complex 3D environments.

"The genomes of these species are very similar," said Streelman, "almost as similar as those of any two humans, and yet their brains vary as much as some mammal groups, one from each other."

Most of the data supporting the "late equals large" hypothesis hasn't been drawn from species that are as closely related as these cichlids, added Streelman.

"Among primates, for example, most of the links between species have been severed long ago. So, it is difficult to study developmental patterning because subtle differences are often confounded by large differences in brain size," said Streelman.

In another part of the study, the team wanted to see if they could use chemicals to change the patterns of gene expression and hence the brain development of the embryos. Could they, in fact, alter the brain of a rock-dwelling embryo to that of a sand-dwelling embryo? Turns out they could.

Sylvester treated the embryos with lithium chloride for three to five hours during an early stage of anterior-posterior patterning. After treatment, he returned the embryos to fish water and then took samples for study at different developmental stages. He found that each time he checked, treatment with lithium chloride up-regulated Wnt signaling, which led to a reallocation of brain precursors to the posterior thalamus.

"Neurogenesis is still a very important process in brain development and evolution," said Streelman. "We've just shown that there are differences in the developmental process much earlier than previously suspected and that these changes are also relevant for brain diversity."

"We're interested in what these early differences have to say about early behavior," said Streelman. "Because if we think in terms of the 'late equals large' model, it means that early in development, brains don't differ that much. But now that we know species possess divergent brains early on, we can begin to assess how early behaviors may differ as well."

Other members of the team include former Georgia Tech undergradate Constance Rich, current Biology PhD candidate Eddie Loh, former post-doc toral fellow in Streelman's lab Gareth Fraser and Moira van Staaden from Bowling Green University. The research was supported by funding from the National Science Foundation, National Institutes of Health and the Alfred P. Sloan Foundation.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan B. Sylvester, Constance A. Rich, Yong-Hwee E. Loh, Moira J. Van Staaden, Gareth J. Fraser, and J. Todd Streelman. Brain diversity evolves via differences in patterning. PNAS, May 3, 2010 DOI: 10.1073/pnas.1000395107

Cite This Page:

Georgia Institute of Technology. "Scientists alter developing fish brain to resemble that of another species." ScienceDaily. ScienceDaily, 4 May 2010. <www.sciencedaily.com/releases/2010/05/100503161342.htm>.
Georgia Institute of Technology. (2010, May 4). Scientists alter developing fish brain to resemble that of another species. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/05/100503161342.htm
Georgia Institute of Technology. "Scientists alter developing fish brain to resemble that of another species." ScienceDaily. www.sciencedaily.com/releases/2010/05/100503161342.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins