Featured Research

from universities, journals, and other organizations

Precisely calculating the age of stars: Key to evolution of a type of white dwarf found

Date:
May 17, 2010
Source:
Universitat Politècnica de Catalunya
Summary:
An international team of scientists has precisely calculated the age of a group of white dwarf stars. The research results open up new opportunities for advancing our understanding of the evolution of stars, plasma physics, and the origin of the universe in general.

Image of the Galactic cluster NGC 6791, obtained using an Earth-based telescope. NGC 6791 is an extremely metal-rich and very old open cluster which has an abundant population of white dwarfs.
Credit: Luigi Bedin and The Space Telescope Science Institute

An international team of scientists has precisely calculated the age of a group of white dwarf stars. The research results open up new opportunities for advancing our understanding of the evolution of stars, plasma physics, and the origin of the universe in general.

A team of scientists from the Universitat Politècnica de Catalunya (UPC Barcelona Tech), the Catalan Institute for Space Studies, the Institute of Space Sciences of the Spanish National Research Council (CSIC), the National University of La Plata (Argentina), and Liverpool John Moores University (UK), led by researcher Enrique García-Berro of the UPC's Department of Applied Physics, has demonstrated that the white dwarf stars in the NGC 6791 star cluster are 8 billion years old, not 6 billion as previously believed. The research opens up new opportunities for extending our knowledge of the origin of the universe.

The results will be published in the scientific journal Nature on May 13.

The researchers calculated the evolution of the white dwarfs from their birth to the present. Their calculations provide experimental confirmation of theories that have been proposed, but which up until now have not been corroborated by observational evidence. Specifically, the researchers have shown that sedimentation of the heaviest elements (under the strong gravity of the stars) and crystallization of material (due to the enormous pressure) take place in the interior of white dwarfs. These physical processes release energy inside the white dwarfs and slow their evolution. If they are properly taken into account, the age of stars of this type can be calculated with precision.

For years scientists have used the age of white dwarfs to estimate the age of the galaxy and other star systems. Their estimates of the age of these stars were based on theoretical considerations, but the level of uncertainty was very high because the occurrence of sedimentation and crystallization in the interior of white dwarfs could not be demonstrated. Up until now the proposed theories had not been independently verified based on observational data because in Earth-bound laboratories it is impossible to achieve the extremely high densities and temperatures that exist inside the stars (i.e., pressures of millions of grams per cubic centimeter and temperatures of millions of degrees). The calculations of this group of researchers were found to coincide with measurements of the age of NGC 6791 based on images taken by the Hubble Space Telescope.

White dwarfs are the most abundant stars in the universe. They are also very dense-similar to the Sun in mass but with a radius comparable to that of the Earth. In fact they are stellar remnants, the compact remains of stars that have reached their final evolutionary state, formed when stars exhaust their nuclear fuel. They emit stored thermal energy and are therefore generally stars of very low luminosity.

Most white dwarfs have cores composed of carbon and oxygen, though they have a surface layer of hydrogen and helium. When they form, white dwarfs are very hot and bright, but because they have no source of energy other than stored thermal energy, they gradually cool and become less bright until they reach a point at which they cease to radiate. White dwarfs, however, can have a lifespan of billions of years. Up until now most calculations indicated that the white dwarfs in the NGC 6791 star cluster were 6 billion years old, but the new research has shown that they were actually born 8 billion years ago.

This hypothesis was demonstrated by simulating the entire evolutionary process of the white dwarfs in a way that includes two physical processes that take place in the core of these stars but have not previously been taken into account: the effect of neon sedimentation, and phase separation of carbon and oxygen during crystallization, which occurs at lower temperatures.

During these two evolutionary stages, the stars release gravitational energy and cooling slows down. The faintest white dwarfs in the cluster are also the reddest and the coolest, so if scientists have good models for cooling, they can calculate the age of the cluster. Accordingly, the scientists measured the color and brightness of all the white dwarfs in the cluster and verified that in the faintest white dwarfs in the cluster the effects of these two physical processes slow down the cooling of the stars, such that the age of the cluster and that of its white dwarfs coincide.

Reliable chronometers

The discovery has important scientific implications because it confirms that white dwarfs can be used as independent, reliable chronometers to determine the age of many star systems and thus contribute to advancing our knowledge of the universe. The knowledge gained can also be applied in other fields such as dense plasma physics.


Story Source:

The above story is based on materials provided by Universitat Politècnica de Catalunya. Note: Materials may be edited for content and length.


Journal Reference:

  1. Enrique García-Berro, Santiago Torres, Leandro G. Althaus, Isabel Renedo, Pablo Lorén-Aguilar, Alejandro H. Córsico, René D. Rohrmann, Maurizio Salaris, Jordi Isern. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature, 2010; 465 (7295): 194 DOI: 10.1038/nature09045

Cite This Page:

Universitat Politècnica de Catalunya. "Precisely calculating the age of stars: Key to evolution of a type of white dwarf found." ScienceDaily. ScienceDaily, 17 May 2010. <www.sciencedaily.com/releases/2010/05/100513064213.htm>.
Universitat Politècnica de Catalunya. (2010, May 17). Precisely calculating the age of stars: Key to evolution of a type of white dwarf found. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/05/100513064213.htm
Universitat Politècnica de Catalunya. "Precisely calculating the age of stars: Key to evolution of a type of white dwarf found." ScienceDaily. www.sciencedaily.com/releases/2010/05/100513064213.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) — Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins