Featured Research

from universities, journals, and other organizations

Control of cell movement with light accomplished in living organisms

Date:
May 19, 2010
Source:
University of North Carolina School of Medicine
Summary:
A new technique uses light to manipulate the activity of a protein at precise times and places within a living cell, providing a new tool for scientists who study the fundamentals of protein function.

A precise understanding of cellular growth and movement is the key to developing new treatments for cancer and other disorders caused by dysfunctional cell behavior. Recent breakthroughs in genetic medicine have uncovered how genes control whether cellular proteins are turned 'on' or 'off' at the molecular level, but much remains to be understood about how protein signaling influences cell behavior.

Related Articles


A technique developed in the laboratory of Klaus Hahn, PhD, the Thurman Professor of Pharmacology at the University of North Carolina at Chapel Hill and a member of UNC Lineberger Comprehensive Cancer Center, uses light to manipulate the activity of a protein at precise times and places within a living cell, providing a new tool for scientists who study the fundamentals of protein function.

In a paper published in the journal Nature Cell Biology, a team led by Denise Montell, PhD, of Johns Hopkins School of Medicine, describes how researchers used the technique, which controls protein behavior in cells and animals simply by shining a focused beam of light on the cells where they want the protein to be active, in live fruit flies.

"This finding complements an additional collaboration with Anna Huttenlocher, PhD of the University of Wisconsin-Madison, published earlier this year in the journal Developmental Cell, showing that this technique could be used to control cell movement in live zebrafish as well," said Hahn.

"We have now shown that this technique works in two different living organisms, providing proof of principle that light can be used to activate a key protein. In this case the protein controls cell movement, enabling us to move cells about in animals. This is particularly valuable in studies where cell movement is the focus of the research, including embryonic development, nerve regeneration and cancer metastasis. Now researchers can control where and where particular proteins are activated in animals, providing a heretofore inaccessible level of control," said Hahn.

The new technology is an advance over previous light-directed methods of cellular control that used toxic wavelengths of light, disrupted the cell membrane or could switch proteins 'on' but not 'off'. Unlike some approaches it requires no injection of cofactors or other unnatural materials into the animals being studied.

The research was the work of a team including Montell, and Xiaobo Wang from Johns Hopkins and Hahn and Yi Wu, PhD, research assistant professor of pharmacology, both from UNC.

Funding was provided by the National Institutes of Health and the Cell Migration Consortium.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaobo Wang, Li He, Yi I. Wu, Klaus M. Hahn, Denise J. Montell. Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo. Nature Cell Biology, 2010; DOI: 10.1038/ncb2061

Cite This Page:

University of North Carolina School of Medicine. "Control of cell movement with light accomplished in living organisms." ScienceDaily. ScienceDaily, 19 May 2010. <www.sciencedaily.com/releases/2010/05/100516195702.htm>.
University of North Carolina School of Medicine. (2010, May 19). Control of cell movement with light accomplished in living organisms. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2010/05/100516195702.htm
University of North Carolina School of Medicine. "Control of cell movement with light accomplished in living organisms." ScienceDaily. www.sciencedaily.com/releases/2010/05/100516195702.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins