Featured Research

from universities, journals, and other organizations

Physicists pin down proton-halo state in Flourine-17

Date:
May 27, 2010
Source:
University of Tennessee at Knoxville
Summary:
A halo may be difficult to acquire in terms of virtue, but it can also be tough to calculate in terms of physics. Physicists have managed to do just that, however. A halo nucleus differs from the more traditional nuclei because it has one or more nucleons (protons or neutrons) that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both short (often lasting only milliseconds) and fragile.

A halo may be difficult to acquire in terms of virtue, but it can also be tough to calculate in terms of physics. Thomas Papenbrock, associate professor of physics and astronomy at the University of Tennessee, Knoxville, and his colleagues Gaute Hagen from Oak Ridge National Laboratory and Morten Hjorth-Jensen from the University of Oslo have managed to do just that, however, and report their findings in Physical Review Letters.

Related Articles


A halo nucleus differs from the more traditional nuclei because it has one or more nucleons (protons or neutrons) that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both short (often lasting only milliseconds) and fragile. Halo nuclei appear at the limits of nuclear existence, very near a place called the dripline. This is the perilous territory where the number of protons and the number of neutrons are plotted against each other and one too many of either means the nucleus will not hold together. Halo nuclei also come with a large number of degrees of freedom -- independent configurations required to explain how a system is built.

Hagen, Hjorth-Jensen and Papenbrock set out to study flourine-17, a "mirror nucleus" of oxygen-17. Each of these isotopes has an atomic number of 17, but with their protons and neutrons in flipped numbers (flourine-17 has 9 protons and 8 neutrons, while oxygen-17 has 8 protons and 9 neutrons). Part of what makes these nuclei interesting is that they are neighbors of the most abundant and stable isotope of oxygen: oxygen-16. They determine its proton and neutron energies, which are the basic ingredients of the nuclear shell model -- the way protons and neutrons are arranged in a nucleus -- and are also key to understanding the shell structure in fluorine and oxygen isotopes. Flourine-17, in particular, has a "halo" formed by an excited proton orbiting far away from the oxygen-16 core that plays an important role in nucleosynthesis, the stellar processes that generate the elements that surround us.

The UTK-ORNL-Oslo team used sophisticated methods to work with the 17 interacting particles in this isotope to better understand it. This is called a many-body problem, meaning that whenever there are more than two bodies interacting with one another, it is difficult to pin down precise calculations of the system. Starting at the beginning (or ab initio, in Latin) the team began with a nuclear Hamiltonian, the operator that describes the energy of a system in terms of its momentum and positional coordinates. They also used the coupled-cluster method -- a numerical technique that solves such quantum many-body problems -- and ORNL's supercomputer Jaguar to successfully complete first-principle calculations of the proton halo state in Fluorine-17. The calculations contain no adjustable parameters and show a computed binding energy (what holds the nucleus together) that closely reflects experimental data.

The more tools scientists have to calculate the properties of nuclei -- how long they live, what holds them together, and how they decay -- the more clearly they can investigate the limits of nuclear existence, understand phenomenological models of the nucleus, and predict nuclear properties in applied fields like nuclear medicine or stockpile stewardship.


Story Source:

The above story is based on materials provided by University of Tennessee at Knoxville. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Hagen, T. Papenbrock, M. Hjorth-Jensen. Ab Initio Computation of the 17F Proton Halo State and Resonances in A=17 Nuclei. Physical Review Letters, 2010; 104 (18): 182501 DOI: 10.1103/PhysRevLett.104.182501

Cite This Page:

University of Tennessee at Knoxville. "Physicists pin down proton-halo state in Flourine-17." ScienceDaily. ScienceDaily, 27 May 2010. <www.sciencedaily.com/releases/2010/05/100526134154.htm>.
University of Tennessee at Knoxville. (2010, May 27). Physicists pin down proton-halo state in Flourine-17. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2010/05/100526134154.htm
University of Tennessee at Knoxville. "Physicists pin down proton-halo state in Flourine-17." ScienceDaily. www.sciencedaily.com/releases/2010/05/100526134154.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins