Featured Research

from universities, journals, and other organizations

Stellar explosions provide the key to understanding the fate of the universe

Date:
July 13, 2010
Source:
University of Leicester
Summary:
The mysteries of the universe and how we came to be are set to be unlocked by a technique for modeling fluids, similar to one which is becoming increasingly popular within the film industry to improve the realism of special effects.

The mysteries of the Universe and how we came to be are set to be unlocked by a technique for modelling fluids, similar to one which is becoming increasingly popular within the film industry to improve the realism of special effects.

Related Articles


Theoretical Astrophysics student, Fergus Wilson from the University of Leicester, is currently utilising a fluid modelling technique within his doctoral research to enable investigation of the mass transfer from one star to another in a binary star system.

Smoothed Particle Hydrodynamics (SPH) is a computational method for modelling fluid as a set of moving particles and can be used to solve the equations of motion between two or more particles. A similar technique has been used to enhance the special effects in blockbuster Hollywood movies such as Tomb Raider and The Matrix Reloaded.

Mr Wilson uses the SPH method to model the explosive eruptions of dying stars to provide vital clues to the current accelerated expansion of the Universe.

Mr Wilson's research focuses on Type Ia supernovae, which occur when White Dwarf stars explode upon reaching a critical mass. His simulations model the formation of discs around accreting stars within a binary star system.

Mr Wilson commented: "Transferred material from one star in the binary system will form a disc with some of it 'gobbled up' by the accreting star. The accreting star then blows off some of this 'gobbled up' material when the pressure becomes too large. This material forms a blast wave and is blown off into the remainder of the disc. How much of the original accreted mass remains on the accreting star will determine how much mass the accreting star will gain or lose during this process. If the accreting star continues to gain mass it will reach a critical limit and the whole star will explode and a supernova will occur.

"All Type Ia supernovae have the same characteristic luminosity which makes them ideal for measuring astronomical distances. They are used as standard candles by astronomers to determine the distance of celestial objects and have allowed astronomers to measure the distances to galaxies at the edge of the known Universe, providing vital clues into the rate the Universe is expanding.

"Clearly understanding how Type Ia supernovae work is of fundamental importance in the quest of understanding how the Universe works as astronomical distances can be measured which are crucial to understanding the fate of the Universe."

His simulations investigate the different effects the wind speed and rotation of the 'mass feeding' stars will have on the disc size and how the energy in the blast waves effects the disc disruption to aid understanding of the process which will hopefully lead to future technological advancements.

"There are also more worldly applications to SPH. It is ideally suited to modelling fluid flow in a variety of situations such as airflow over a car or plane and pyro flows through buildings. There are therefore areas of overlap between the numerical methods employed in astrophysics and situations of more industrial and commercial interest, and vice versa."

Fergus Wilson will be presenting his research to the public at the University of Leicester on June 24.


Story Source:

The above story is based on materials provided by University of Leicester. Note: Materials may be edited for content and length.


Cite This Page:

University of Leicester. "Stellar explosions provide the key to understanding the fate of the universe." ScienceDaily. ScienceDaily, 13 July 2010. <www.sciencedaily.com/releases/2010/05/100527101053.htm>.
University of Leicester. (2010, July 13). Stellar explosions provide the key to understanding the fate of the universe. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2010/05/100527101053.htm
University of Leicester. "Stellar explosions provide the key to understanding the fate of the universe." ScienceDaily. www.sciencedaily.com/releases/2010/05/100527101053.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rocket Science: Building And Testing The Space Launch System

Rocket Science: Building And Testing The Space Launch System

Newsy (Apr. 19, 2015) — NASA&apos;s new rocket system will eventually be the most powerful ever built by man, but there are a lot of moving parts to test first. Video provided by Newsy
Powered by NewsLook.com
2015 NASA Rover Challenge Underway in Alabama

2015 NASA Rover Challenge Underway in Alabama

Reuters - Light News Video Online (Apr. 19, 2015) — Teams face an uphill battle for fastest rover in this year&apos;s NASA Human Exploration Rover Challenge in Alabama. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
International Space Station Captures SpaceX Dragon Spacecraft

International Space Station Captures SpaceX Dragon Spacecraft

Reuters - News Video Online (Apr. 17, 2015) — SpaceX&apos;s Dragon spacecraft reaches the International Space Station and is successfully captured by the station&apos;s robotic arm. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Planet Defence Conference Tackles Asteroid Threat

Planet Defence Conference Tackles Asteroid Threat

AFP (Apr. 17, 2015) — Scientists gathered at a European Space Agency (ESA) facility outside Rome this week for the Planetary Defence Conference 2015 to discuss how to tackle the potential threat from asteroids hitting Earth. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins