Featured Research

from universities, journals, and other organizations

Novel therapeutic approach shows promise against multiple bacterial pathogens

Date:
May 28, 2010
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
A team of scientists from government, academia and private industry has developed a novel treatment that protects mice from infection with the bacterium that causes tularemia, a highly infectious disease of rodents, sometimes transmitted to people, and also known as rabbit fever. In additional experiments with human immune cells, the treatment also demonstrated protection against three other types of disease-causing bacteria that, like the tularemia bacteria, occur naturally, can be highly virulent, and are considered possible agents of bioterrorism.

This image shows novel therapeutic protects against multiple bacterial pathogens.
Credit: NIAID/RML

A team of scientists from government, academia and private industry has developed a novel treatment that protects mice from infection with the bacterium that causes tularemia, a highly infectious disease of rodents, sometimes transmitted to people, and also known as rabbit fever. In additional experiments with human immune cells, the treatment also demonstrated protection against three other types of disease-causing bacteria that, like the tularemia bacteria, occur naturally, can be highly virulent, and are considered possible agents of bioterrorism.

Related Articles


The experimental therapeutic works by stimulating the host immune system to destroy invading microbes. In contrast, antibiotics work by directly attacking invading bacteria, which often develop resistance to these medications. The therapeutic has the potential to enhance the action of antibiotics and provide an alternative to them.

"A therapeutic that protects against a wide array of bacterial pathogens would have enormous medical and public health implications for naturally occurring infections and potential agents of bioterrorism," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health. "This creative approach is a prime example of public-private partnerships that can facilitate progress from a basic research finding to new, desperately needed novel therapeutics."

Catharine Bosio, Ph.D., and her colleagues at NIAID's Rocky Mountain Laboratories in Hamilton, Mont., led the study. Study collaborators are from Colorado State University in Fort Collins and Juvaris Biotherapeutics of Burlingame, Calif. The study is available online in the open-access journal PLoS Pathogens.

In the study, the researchers combined components isolated from the membrane of a weakened strain of Francisella tularensis, the agent of tularemia, with the Juvaris product CLDC (cationic liposome DNA complexes). The combination stimulated a natural antibacterial mechanism, called reactive oxygen species (ROS) and reactive nitrogen species (RNS), in immune cells that ingest bacteria. ROS and RNS attack and kill invading bacteria, preventing replication and spread of the pathogens to other cells.

Sixty percent of mice in the study survived lethal pulmonary infection with virulent F. tularensis when treated with the therapeutic intravenously three days before the bacterial challenge. No mice survived when given the bacterial components or the CLDC alone, demonstrating the importance of combining both to maximize protection in mouse and human cells. The treatment also showed broad usage, protecting human immune cells from bacteria that cause plague, melioidosis and brucellosis as well as tularemia. Melioidosis is primarily a tropical disease spread to humans and animals through contaminated soil and water. Brucellosis is a disease that primarily affects animals, including humans who come in contact with infected animals or animal products, such as contaminated milk.

According to Dr. Bosio, the three-day advance treatment appears crucial to providing enough time to stimulate the immune system. Any treatment less than three days in advance failed to protect the mice, she said.

"We are continuing to improve the versatility of this treatment as an antibacterial therapeutic with respect to timing of delivery and efficacy," she says. "Meanwhile, CLDC plus membrane protein fractions is proving to be an excellent tool to determine how to safely and successfully stimulate the body's own antibacterial army to protect itself against highly infectious invaders."

The research team will continue to study the precise role that membrane protein fractions play in combination with CLDC, and how the combination affects the production of RNS and ROS in cells from mice and from humans.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. R Ireland et al. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Pathogens, 2010; 6 (5): e1000921 DOI: 10.1371/journal.ppat.1000921

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Novel therapeutic approach shows promise against multiple bacterial pathogens." ScienceDaily. ScienceDaily, 28 May 2010. <www.sciencedaily.com/releases/2010/05/100527170957.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2010, May 28). Novel therapeutic approach shows promise against multiple bacterial pathogens. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/05/100527170957.htm
NIH/National Institute of Allergy and Infectious Diseases. "Novel therapeutic approach shows promise against multiple bacterial pathogens." ScienceDaily. www.sciencedaily.com/releases/2010/05/100527170957.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins