Featured Research

from universities, journals, and other organizations

Novel therapeutic approach shows promise against multiple bacterial pathogens

Date:
May 28, 2010
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
A team of scientists from government, academia and private industry has developed a novel treatment that protects mice from infection with the bacterium that causes tularemia, a highly infectious disease of rodents, sometimes transmitted to people, and also known as rabbit fever. In additional experiments with human immune cells, the treatment also demonstrated protection against three other types of disease-causing bacteria that, like the tularemia bacteria, occur naturally, can be highly virulent, and are considered possible agents of bioterrorism.

This image shows novel therapeutic protects against multiple bacterial pathogens.
Credit: NIAID/RML

A team of scientists from government, academia and private industry has developed a novel treatment that protects mice from infection with the bacterium that causes tularemia, a highly infectious disease of rodents, sometimes transmitted to people, and also known as rabbit fever. In additional experiments with human immune cells, the treatment also demonstrated protection against three other types of disease-causing bacteria that, like the tularemia bacteria, occur naturally, can be highly virulent, and are considered possible agents of bioterrorism.

The experimental therapeutic works by stimulating the host immune system to destroy invading microbes. In contrast, antibiotics work by directly attacking invading bacteria, which often develop resistance to these medications. The therapeutic has the potential to enhance the action of antibiotics and provide an alternative to them.

"A therapeutic that protects against a wide array of bacterial pathogens would have enormous medical and public health implications for naturally occurring infections and potential agents of bioterrorism," says Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health. "This creative approach is a prime example of public-private partnerships that can facilitate progress from a basic research finding to new, desperately needed novel therapeutics."

Catharine Bosio, Ph.D., and her colleagues at NIAID's Rocky Mountain Laboratories in Hamilton, Mont., led the study. Study collaborators are from Colorado State University in Fort Collins and Juvaris Biotherapeutics of Burlingame, Calif. The study is available online in the open-access journal PLoS Pathogens.

In the study, the researchers combined components isolated from the membrane of a weakened strain of Francisella tularensis, the agent of tularemia, with the Juvaris product CLDC (cationic liposome DNA complexes). The combination stimulated a natural antibacterial mechanism, called reactive oxygen species (ROS) and reactive nitrogen species (RNS), in immune cells that ingest bacteria. ROS and RNS attack and kill invading bacteria, preventing replication and spread of the pathogens to other cells.

Sixty percent of mice in the study survived lethal pulmonary infection with virulent F. tularensis when treated with the therapeutic intravenously three days before the bacterial challenge. No mice survived when given the bacterial components or the CLDC alone, demonstrating the importance of combining both to maximize protection in mouse and human cells. The treatment also showed broad usage, protecting human immune cells from bacteria that cause plague, melioidosis and brucellosis as well as tularemia. Melioidosis is primarily a tropical disease spread to humans and animals through contaminated soil and water. Brucellosis is a disease that primarily affects animals, including humans who come in contact with infected animals or animal products, such as contaminated milk.

According to Dr. Bosio, the three-day advance treatment appears crucial to providing enough time to stimulate the immune system. Any treatment less than three days in advance failed to protect the mice, she said.

"We are continuing to improve the versatility of this treatment as an antibacterial therapeutic with respect to timing of delivery and efficacy," she says. "Meanwhile, CLDC plus membrane protein fractions is proving to be an excellent tool to determine how to safely and successfully stimulate the body's own antibacterial army to protect itself against highly infectious invaders."

The research team will continue to study the precise role that membrane protein fractions play in combination with CLDC, and how the combination affects the production of RNS and ROS in cells from mice and from humans.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. R Ireland et al. Effective, broad spectrum control of virulent bacterial infections using cationic DNA liposome complexes combined with bacterial antigens. PLoS Pathogens, 2010; 6 (5): e1000921 DOI: 10.1371/journal.ppat.1000921

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Novel therapeutic approach shows promise against multiple bacterial pathogens." ScienceDaily. ScienceDaily, 28 May 2010. <www.sciencedaily.com/releases/2010/05/100527170957.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2010, May 28). Novel therapeutic approach shows promise against multiple bacterial pathogens. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/05/100527170957.htm
NIH/National Institute of Allergy and Infectious Diseases. "Novel therapeutic approach shows promise against multiple bacterial pathogens." ScienceDaily. www.sciencedaily.com/releases/2010/05/100527170957.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins