Featured Research

from universities, journals, and other organizations

Deep subduction of the Indian continental crust beneath Asia

Date:
May 29, 2010
Source:
National Oceanography Centre, Southampton (UK)
Summary:
Geological investigations in the Himalayas have revealed evidence that when India and Asia collided some 90 million years ago, the continental crust of the Indian tectonic plate was forced down under the Asian plate, sinking down into the Earth's mantle to a depth of at least 200 km.

The map shows the location of the study area in the Himalayas. Inset: A schematic shows the Indian plate subducting beneath the Asian plate.
Credit: NOC

Geological investigations in the Himalayas have revealed evidence that when India and Asia collided some 90 million years ago, the continental crust of the Indian tectonic plate was forced down under the Asian plate, sinking down into the Earth's mantle to a depth of at least 200 km kilometres.

Related Articles


"The subduction of continental crust to this depth has never been reported in the Himalayas and is also extremely rare in the rest of world," said Dr Anju Pandey of the National Oceanography Centre in Southampton, who led the research.

Pandey and her colleagues used sophisticated analytical techniques to demonstrate the occurrence of relict majorite, a variety of mineral garnet, in rocks collected from the Himalayas.

Majorite is stable only under ultra-high pressure conditions, meaning that they must have been formed very deep down in the Earth's crust, before the subducted material was exhumed millions of years later.

"Our findings are significant because researchers have disagreed about the depth of subduction of the Indian plate beneath Asia," said Pandey.

In fact, the previous depth estimates conflicted with estimates based on computer models. The new results suggest that the leading edge of the Indian plate sank to a depth around double that of previous estimates.

"Our results are backed up by computer modelling and will radically improve our understanding of the subduction of the Indian continental crust beneath the Himalayas," said Pandey.

The new discovery is also set to modify several fundamental parameters of Himalayan tectonics, such as the rate of Himalayan uplift, angle, and subduction of the Indian plate.

The new research findings were published this month in the journal Geology.

The study was supported by the UK's Natural Environment research Council.

The researchers are Anju Pandey and Andy Milton of the National Oceanography Centre, Southampton, Mary Leech of San Francisco State university), and Preeti Singh and Pramod Verma of the University of Delhi.


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Pandey, M. Leech, A. Milton, P. Singh, P. K. Verma. Evidence of former majoritic garnet in Himalayan eclogite points to 200-km-deep subduction of Indian continental crust. Geology, 2010; 38 (5): 399 DOI: 10.1130/G30584.1

Cite This Page:

National Oceanography Centre, Southampton (UK). "Deep subduction of the Indian continental crust beneath Asia." ScienceDaily. ScienceDaily, 29 May 2010. <www.sciencedaily.com/releases/2010/05/100528101552.htm>.
National Oceanography Centre, Southampton (UK). (2010, May 29). Deep subduction of the Indian continental crust beneath Asia. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/05/100528101552.htm
National Oceanography Centre, Southampton (UK). "Deep subduction of the Indian continental crust beneath Asia." ScienceDaily. www.sciencedaily.com/releases/2010/05/100528101552.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins