Featured Research

from universities, journals, and other organizations

New cancer treatment? MM-111 antibody uses HER2 target to reach and block HER3

Date:
June 5, 2010
Source:
Fox Chase Cancer Center
Summary:
Patients with HER2-positive cancers can have dramatic responses to HER2-targeted drugs but eventually develop resistance to the agents. With that problem in mind, researchers are testing a novel type of antibody called MM-111 in patients with HER2-positive disease who have progressed on standard therapy.

Patients with HER2-positive cancers can have dramatic responses to HER2-targeted drugs but eventually develop resistance to the agents. With that problem in mind, Fox Chase Cancer Center researchers are testing a novel type of antibody called MM-111 in patients with HER2-positive disease who have progressed on standard therapy.

Related Articles


Unlike natural antibodies, which have two arms that recognize the same antigen, the new MM-111 antibody has one arm that binds the HER2 receptor on the cell surface and a second arm that binds the HER3 receptor and blocks signaling through HER3.

"This is the first-in-human bi-specific antibody that targets the HER2/HER3 pathway," says Crystal Denlinger, M.D., a medical oncologist who is leading the phase I/II trial at Fox Chase. "It uses the HER2 target to deliver a punch to the HER3 pathway." Denlinger will present the phase I/II study design and background data at the 46th Annual Meeting of the American Society of Clinical Oncology on June 7.

Scientists have recently found that HER3 (also called ErbB3) signaling is an important therapeutic target in HER2-positive cancers. HER3 is the preferred binding partner for the HER2 receptor and together they promote tumor growth. In tumors that have become resistant to HER2-targeted drugs, the HER3 receptor may become highly active and appears to contribute to the resistance.

"With MM-111, we now have the technology and ability to exploit this pathway and provide an additional therapeutic target within the HER2 pathway," Denlinger says.

Enrollment in the phase I portion of the trial is complete with 11 advanced breast cancer patients and one HER2-positive gastric cancer patient. The final safety analysis for the phase I portion is on-going, and the team anticipates beginning enrollment of patients in the phase II portion of the trial later this summer. Advanced breast cancer patients with HER2-positive disease who have progressed on standard therapy and have adequate performance status, bone marrow reserve, and organ function will be eligible for the phase II trial.

"I am really excited about this drug," Denlinger says. "It is a fascinating mechanism, certainly a novel mechanism, and I think the concept of using HER2 as a target to bring a therapeutic intervention to HER3 makes a lot of sense. Many HER2-positive patients develop resistance to their HER2-directed therapies, so if we can find an alternative means to block that pathway by targeting HER3 that would be a clinically meaningful step forward for the HER2 population in breast cancer and in other HER2-positive cancers."

The trial is sponsored by Merrimack Pharmaceuticals, Inc. (Cambridge, Mass.), which is developing the antibody.

The general concept behind the new drug was first developed at Fox Chase in collaboration with researchers at the University of California, San Francisco. Both institutions joined to license the intellectual property for the bispecific antibody to Merrimack, which further refined the antibody and made it more suitable for use as a drug in humans.

The origin of the double-headed antibody has its roots in a conversation between Louis Weiner, M.D., then-chair of medical oncology at Fox Chase, and Greg Adams, Ph.D., an antibody engineer and Co-Leader of Fox Chase's Molecular and Translational Medicine Program. Weiner and Adams took the concept of an anti-ErbB2/ErbB3 bispecific antibody to their long-term collaborator James Marks, M.D., Ph.D., of the University of California, San Francisco. The Adams lab used recombinant DNA technology to engineer the ErbB2 and ErbB3 targets which the Marks lab then used to isolate the antibodies that the Adams lab used to engineer the prototype bispecific antibodies. The exquisite ability of these prototype bispecific antibodies to target and treat breast cancer cells was then determined in the laboratory by Matthew Robinson, Ph.D., a Fox Chase associate member.

After licensing the intellectual property, Merrimack scientists further refined the concept to create a new drug. Its antibody arms bind more tightly to their targets and its linker chain is derived from a human protein, which allows the drug to survive in the bloodstream longer. According to Merrimack, MM-111 is the first bispecific antibody binding two different receptors on the same cell to enter clinical development.


Story Source:

The above story is based on materials provided by Fox Chase Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

Fox Chase Cancer Center. "New cancer treatment? MM-111 antibody uses HER2 target to reach and block HER3." ScienceDaily. ScienceDaily, 5 June 2010. <www.sciencedaily.com/releases/2010/06/100604132049.htm>.
Fox Chase Cancer Center. (2010, June 5). New cancer treatment? MM-111 antibody uses HER2 target to reach and block HER3. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/06/100604132049.htm
Fox Chase Cancer Center. "New cancer treatment? MM-111 antibody uses HER2 target to reach and block HER3." ScienceDaily. www.sciencedaily.com/releases/2010/06/100604132049.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins