Featured Research

from universities, journals, and other organizations

X-ray diffraction microscope reveals 3-D internal structure of whole cell

Date:
June 9, 2010
Source:
University of California - Los Angeles
Summary:
Three-dimensional imaging is dramatically expanding our ability to examine biological specimens enabling a peek into internal structures. Recent advance in X-ray diffraction method has greatly extended the limit of this approach. Method can be applied to organelles, viruses and cells and could impact treatment of human diseases.

A 3D volume rendering of a reconstructed yeast spore from a set of 2D projectional images by a tomographic method, showing nucleus (orange), ER (green), vacuole (white), mitochondria (blue), and granules (light blue).
Credit: Image courtesy of UCLA/California NanoSystems Institute

Three-dimensional imaging is dramatically expanding the ability of researchers to examine biological specimens, enabling a peek into their internal structures. And recent advances in X-ray diffraction methods have helped extend the limit of this approach.

While significant progress has been made in optical microscopy to break the diffraction barrier, such techniques rely on fluorescent labeling technologies, which prohibit the quantitative 3-D imaging of the entire contents of cells. Cryo-electron microscopy can image structures at a resolution of 3 to 5 nanometers, but this only works with thin or sectioned specimens.

And although X-ray protein crystallography is currently the primary method used for determining the 3-D structure of protein molecules, many biological specimens -- such as whole cells, cellular organelles, some viruses and many important protein molecules -- are difficult or impossible to crystallize, making their structures inaccessible. Overcoming these limitations requires the employment of different techniques.

Now, in a paper published May 31 in Proceedings of National Academy of Sciences, UCLA researchers and their collaborators demonstrate the use of a unique X-ray diffraction microscope that enabled them to reveal the internal structure of yeast spores. The team reports the quantitative 3-D imaging of a whole, unstained cell at a resolution of 50 to 60 nanometers using X-ray diffraction microscopy, also known as lensless imaging.

Researchers identified the 3-D morphology and structure of cellular organelles, including the cell wall, vacuole, endoplasmic reticulum, mitrochondria, granules and nucleolus. The work may open a door to identifying the individual protein molecules inside whole cells using labeling technologies.

The lead authors on the paper are Huaidong Jiang, a UCLA assistant researcher in physics and astronomy, and John Miao, a UCLA professor of physics and astronomy. The work is a culmination of a collaboration started three years ago with Fuyu Tamanoi, UCLA professor of microbiology, immunology and molecular genetics. Miao and Tamanoi are both researchers at UCLA's California NanoSystems Institute. Other collaborators include teams at Riken Spring 8 in Japan and the Institute of Physics, Academia Sinica, in Taiwan.

"This is the first time that people have been able to peek into the 3-D internal structure of a biological specimen, without cutting it into sections, using X-ray diffraction microscopy," Miao said.

"By avoiding use of X-ray lenses, the resolution of X-ray diffraction microscopy is ultimately limited by radiation damage to biological specimens. Using cryogenic technologies, 3-D imaging of whole biological cells at a resolution of 5 to 10 nanometers should be achievable," Miao said. "Our work hence paves a way for quantitative 3-D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy."

Tamanoi prepared the yeast spore samples analyzed in this study. Spores are specialized cells that are formed when they are placed under nutrient-starved conditions. Cells use this survival strategy to cope with harsh conditions.

"Biologists wanted to examine internal structures of the spore, but previous microscopic studies provided information on only the surface features. We are very excited to be able to view the spore in 3-D," Tamanoi said. "We can now look into the structure of other spores, such as Anthrax spores and many other fungal spores. It is also important to point out that yeast spores are of similar size to many intracellular organelles in human cells. These can be examined in the future."

Since its first experimental demonstration by Miao and collaborators in 1999, coherent diffraction microscopy has been applied to imaging a wide range of materials science and biological specimens, such as nanoparticles, nanocrystals, biomaterials, cells, cellular organelles, viruses and carbon nanotubes using X-ray, electron and laser facilities worldwide. Until now, however, the radiation-damage problem and the difficulty of acquiring high-quality 3-D diffraction patterns from individual whole cells have prevented the successful high-resolution 3-D imaging of biological cells by X-ray diffraction.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Jennifer Marcus. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Jiang, C. Song, C.-C. Chen, R. Xu, K. S. Raines, B. P. Fahimian, C.-H. Lu, T.-K. Lee, A. Nakashima, J. Urano, T. Ishikawa, F. Tamanoi, J. Miao. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1000156107

Cite This Page:

University of California - Los Angeles. "X-ray diffraction microscope reveals 3-D internal structure of whole cell." ScienceDaily. ScienceDaily, 9 June 2010. <www.sciencedaily.com/releases/2010/06/100607101808.htm>.
University of California - Los Angeles. (2010, June 9). X-ray diffraction microscope reveals 3-D internal structure of whole cell. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/06/100607101808.htm
University of California - Los Angeles. "X-ray diffraction microscope reveals 3-D internal structure of whole cell." ScienceDaily. www.sciencedaily.com/releases/2010/06/100607101808.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins