Featured Research

from universities, journals, and other organizations

Neutrinos and antineutrinos differ in key property, experiment suggests

Date:
June 15, 2010
Source:
DOE/Fermi National Accelerator Laboratory
Summary:
Scientists have announced the world's most precise measurement of the parameters that govern antineutrino oscillations. This mass difference parameter, called "delta m squared", is smaller by approximately 40 percent for neutrinos than for antineutrinos. However, there is a still a five percent probability that delta m squared is actually the same for neutrinos and antineutrinos. Theorists expected the two values to be the same.

When operating at highest intensity, the NuMI beam line transports a package of 35,000 billion protons every two seconds to a graphite target. The target converts the protons into bursts of particles with exotic names such as kaons and pions. Like a beam of light emerging from a flashlight, the particles form a wide cone when leaving the target. A set of two special lenses, called horns (shown above), is the key instrument to focus the beam and send it in the right direction. The beam particles decay and produce muon neutrinos, which travel in the same direction.
Credit: Photo by Peter Ginter

Scientists of the MINOS experiment at the Department of Energy's Fermi National Accelerator laboratory have announced the world's most precise measurement to date of the parameters that govern antineutrino oscillations, the back-and-forth transformations of antineutrinos from one type to another. This result provides information about the difference in mass between different antineutrino types.

Related Articles


The measurement showed an unexpected variance in the values for neutrinos and antineutrinos. This mass difference parameter, called Δm2 ("delta m squared"), is smaller by approximately 40 percent for neutrinos than for antineutrinos.

However, there is a still a five percent probability that Δm2 is actually the same for neutrinos and antineutrinos. With such a level of uncertainty, MINOS physicists need more data and analysis to know for certain if the variance is real.

Neutrinos and antineutrinos behave differently in many respects, but the MINOS results, presented at the Neutrino 2010 conference in Athens, Greece, and in a seminar at Fermilab, are the first observation of a potential fundamental difference that established physical theory could not explain.

"Everything we know up to now about neutrinos would tell you that our measured mass difference parameters should be very similar for neutrinos and antineutrinos," said MINOS co-spokesperson Rob Plunkett. "If this result holds up, it would signal a fundamentally new property of the neutrino-antineutrino system. The implications of this difference for the physics of the universe would be profound."

The NUMI beam is capable of producing intense beams of either antineutrinos or neutrinos. This capability allowed the experimenters to measure the unexpected mass difference parameters. The measurement also relies on the unique characteristics of the MINOS detector, particularly its magnetic field, which allows the detector to separate the positively and negatively charged muons resulting from interactions of antineutrinos and neutrinos, respectively. MINOS scientists have also updated their measurement of the standard oscillation parameters for muon neutrinos, providing an extremely precise value of Δm2.

Muon antineutrinos are produced in a beam originating in Fermilab's Main Injector. The antineutrinos' extremely rare interactions with matter allow most of them to pass through the Earth unperturbed. A small number, however, interact in the MINOS detector, located 735 km away from Fermilab in Soudan, Minnesota. During their journey, which lasts 2.5 milliseconds, the particles oscillate in a process governed by a difference between their mass states.

"We do know that a difference of this size in the behavior of neutrinos and antineutrinos could not be explained by current theory," said MINOS co-spokesperson Jenny Thomas. "While the neutrinos and antineutrinos do behave differently on their journey through the Earth, the Standard Model predicts the effect is immeasurably small in the MINOS experiment. Clearly, more antineutrino running is essential to clarify whether this effect is just due to a statistical fluctuation."

The MINOS experiment involves more than 140 scientists, engineers, technical specialists and students from 30 institutions, including universities and national laboratories, in five countries: Brazil, Greece, Poland, the United Kingdom and the United States. Funding comes from: the Department of Energy and the National Science Foundation in the U.S., the Science and Technology Facilities Council in the U.K; the University of Minnesota in the U.S.; the University of Athens in Greece; and Brazil's Foundation for Research Support of the State of São Paulo (FAPESP) and National Council of Scientific and Technological Development (CNPq).

Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.


Story Source:

The above story is based on materials provided by DOE/Fermi National Accelerator Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Fermi National Accelerator Laboratory. "Neutrinos and antineutrinos differ in key property, experiment suggests." ScienceDaily. ScienceDaily, 15 June 2010. <www.sciencedaily.com/releases/2010/06/100614121606.htm>.
DOE/Fermi National Accelerator Laboratory. (2010, June 15). Neutrinos and antineutrinos differ in key property, experiment suggests. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2010/06/100614121606.htm
DOE/Fermi National Accelerator Laboratory. "Neutrinos and antineutrinos differ in key property, experiment suggests." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614121606.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins