Featured Research

from universities, journals, and other organizations

NASA demonstrates tsunami prediction system

Date:
June 14, 2010
Source:
NASA/Jet Propulsion Laboratory
Summary:
A NASA-led research team has successfully demonstrated for the first time elements of a prototype tsunami prediction system that quickly and accurately assesses large earthquakes and estimates the size of resulting tsunamis.

Figure (a): NASA's Global Differential GPS (GDGPS) network measured the ground displacement caused by the magnitude 8.8 Chile earthquake on February 27, 2010, in real time at its station in Santiago, Chile. Figure (b): The coastal GPS data were used to calculate the tsunami source energy and drive the tsunami prediction model. Figure (c): The NASA/French Space AgencyJason-1 and Ocean Surface Topography Mission/Jason-2 satellites were used to confirm the tsunami amplitude prediction of the GPS-based model prediction.
Credit: NASA/JPL-Caltech

A NASA-led research team has successfully demonstrated for the first time elements of a prototype tsunami prediction system that quickly and accurately assesses large earthquakes and estimates the size of resulting tsunamis.

Related Articles


After the magnitude 8.8 Chilean earthquake on Feb. 27, a team led by Y. Tony Song of NASA's Jet Propulsion Laboratory in Pasadena, Calif., used real-time data from the agency's Global Differential GPS (GDGPS) network to successfully predict the size of the resulting tsunami. The network, managed by JPL, combines global and regional real-time data from hundreds of GPS sites and estimates their positions every second. It can detect ground motions as small as a few centimeters.

"This successful test demonstrates that coastal GPS systems can effectively be used to predict the size of tsunamis," said Song. "This could allow responsible agencies to issue better warnings that can save lives and reduce false alarms that can unnecessarily disturb the lives of coastal residents."

Song's team concluded that the Chilean earthquake, the fifth largest ever recorded by instruments, would generate a moderate, or local, tsunami unlikely to cause significant destruction in the Pacific. The tsunami's effect was relatively small outside of Chile.

Song's GPS-based prediction was later confirmed using sea surface height measurements from the joint NASA/French Space Agency Jason-1 and Jason-2 altimetry satellites. This work was partially carried out by researchers at Ohio State University, Columbus.

"The value of coordinated real-time observations from precision GPS, satellite altimetry and advanced Earth models has been demonstrated," said John LaBrecque, manager of the Solid Earth and Natural Hazards program in the Earth Science Division of NASA's Science Mission Directorate in Washington.

Song's prediction method, published in 2007, estimates the energy an undersea earthquake transfers to the ocean to generate a tsunami. It relies on data from coastal GPS stations near an epicenter, along with information about the local continental slope. The continental slope is the descent of the ocean floor from the edge of the continental shelf to the ocean bottom.

Conventional tsunami warning systems rely on estimates of an earthquake's location, depth and magnitude to determine whether a large tsunami may be generated. However, history has shown earthquake magnitude is not a reliable indicator of tsunami size. Previous tsunami models presume a tsunami's power is determined by how much the seafloor is displaced vertically. Song's theory says horizontal motions of a faulting continental slope also contribute to a tsunami's power by transferring kinetic energy to the ocean.

The theory is further substantiated in a recently accepted research paper by Song and co-author Shin-Chan Han of NASA's Goddard Space Flight Center, Greenbelt, Md. That study used data from the NASA/German Aerospace Center Gravity Recovery and Climate Experiment (Grace) satellites to examine the 2004 Indian Ocean tsunami.

When the Feb. 27, 2010, earthquake struck, its ground motion was captured by the NASA GDGPS network's station in Santiago, Chile, about 235 kilometers (146 miles) from the earthquake's epicenter. These data were made available to Song within minutes of the earthquake, enabling him to derive the seafloor motions.

Based on these GPS data, Song calculated the tsunami's source energy, ranking it as moderate: a 4.8 on the system's 10-point scale (10 being most destructive). His conclusion was based on the fact that the ground motion detected by GPS indicated the slip of the fault transferred fairly minimal kinetic energy to the ocean.

"We were fortunate to have a station sufficiently close to the epicenter," said Yoaz Bar-Sever, JPL manager of the GDGPS system. "Broad international collaboration is required to densify the GPS tracking network so that it adequately covers all the fault zones that can give rise to large earthquakes around the world."


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "NASA demonstrates tsunami prediction system." ScienceDaily. ScienceDaily, 14 June 2010. <www.sciencedaily.com/releases/2010/06/100614161722.htm>.
NASA/Jet Propulsion Laboratory. (2010, June 14). NASA demonstrates tsunami prediction system. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/06/100614161722.htm
NASA/Jet Propulsion Laboratory. "NASA demonstrates tsunami prediction system." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614161722.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins