Featured Research

from universities, journals, and other organizations

Blood relations: New study explores early detection of ovarian cancer

Date:
June 17, 2010
Source:
Arizona State University
Summary:
Researchers have used a novel method for identifying biomarkers -- proteins in blood that can identify ovarian cancer before symptoms appear.

Despite many research advances, ovarian cancer remains lethal in a majority of cases, due to late diagnosis of the disease. In a new study, Dr. Joshua LaBaer of the Biodesign Institute at Arizona State University, along with Arturo Ramirez and Paul Lampe, researchers at the Fred Hutchinson Cancer Research Center in Seattle, used a novel method for identifying biomarkers—proteins in blood that can identify ovarian cancer before symptoms appear.

The work, which appeared recently in the journal Molecular and Cellular Proteomics, holds the potential for significant improvements in patient survival rate. The research is part of the Early Detection Research Network program of the National Cancer Institute.

As LaBaer notes, ovarian cancer is an attractive target for biomarker study. “This is a disease for which an early diagnostic test would make an enormous difference in the health of women.” Highly treatable in its early stage, ovarian cancer is typically not identified until it has progressed to stage 3 or beyond. Often, it is detected accidentally, in the course of some other test or procedure, for example, during an oophorectomy. “By the time it’s caught,” LaBaer says, “it has usually speckled the abdomen with advanced tumors.”

At present, only one reliable biomarker for ovarian cancer exists. Known as CA 125, this protein is produced on the surface of cells and released into the bloodstream. Elevated levels of CA 125 are indicative of ovarian cancer, but testing for CA 125 alone is not adequate. Such tests can produce both false positive and false negative results. Further, the level of CA 125 tends to go up in proportion to tumor growth, sometimes providing strong evidence only after the disease has reached its later, terminal stages.

LaBaer stresses that reliable early detection will require the discovery and combined application of multiple biomarkers. One innovative way to hunt for them involves the use of antibodies. These proteins—produced by the B cells of the body’s immune system—are able to selectively bind with disease-associated antigens. Various techniques permit researchers to probe blood serum, pulling out the antigens that bind to the antibodies and observing them with the aid of fluorescence or other methods.

Traditional means of producing antibodies for research are labor-intensive and cumbersome, requiring injection of antigens into animals, which then act as production sites for the antibodies of interest. A new method however allows antibodies to be engineered synthetically. In this scenario, the portion of the antibody responsible for binding with an antigen, known as the variable region, is built from amino acids. These single chain variable fragments or scFvs can be inserted into bacteria, which act as vectors for the antibody fragments, much as a mouse or other animal would carry a traditional antibody.

scFvs encoded in bacteria have been assembled into vast libraries, capable of probing the full complexity of proteins found in blood. When an scFv detects something unusual in the blood that may suggest an abnormality, it binds to it, just as in a normal immune response. Ramirez used a library of scFvs to find which antibody fragments selectively attached to proteins in blood carrying ovarian cancer, eliminating the antibodies that bound with proteins in normal blood. The method yielded 19 distinct scFvs that appeared to display specific affinity for proteins exclusively found in ovarian cancerous blood serum.

Identification of the protein antigens bound to these scFvs however, proved far trickier. After several years of frustrating attempts to recognize these protein culprits, Ramirez teamed up with LaBaer, applying a new method that would allow them to screen the cancer-associated scFvs against thousands of proteins of known sequence.

The technique—known as NAPPA (for nucleic acid programmable protein array), provides a convenient means to display thousands of different proteins. Further, proteins used in NAPPA are synthesized freshly for each experiment and do not require the lengthy processes of purification necessary with conventional protein arrays.

When the team screened the 19 selected ScFvs, they found that about two thirds stuck to a target in the NAPPA array, allowing for positive identification. Intriguingly, these distinct ScFvs bound with the same protein, evidentially attaching to different regions. As LaBaer notes, this fact offers tantalizing hints that the technique may indeed have sniffed out a consistent biomarker for ovarian cancer, rather than anomalous proteins lacking true predictive power.

The study also examined proximal tumor fluid for ovarian cancer, detecting in high concentrations the key protein antigens identified with the microarray. According to LaBaer, this finding provides further support for the idea that these proteins are indeed associated with ovarian cancer, and do not represent mere anomalies.

Ramirez and Lampe plan follow-up work to further validate the proteins discovered and assess their clinical value as early detectors of ovarian cancer. They also have protein candidates for other cancers and hope to screen these as potential biomarkers, using LaBaer’s NAPPA technology.


Story Source:

The above story is based on materials provided by Arizona State University. The original article was written by Richard Harth, Biodesign Institute Science Writer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arturo B. Ramirez, Christian M. Loch, Yuzheng Zhang, Yan Liu, Xiaohong Wang, Elizabeth A. Wayner, Jonathon E. Sargent, Sahar Sibani, Eugenie Hainsworth, Eliseo A. Mendoza, Ralph Eugene, Joshua LaBaer, Nicole D. Urban, Martin W. Mcintosh, Paul D. Lampe. Use of a single chain antibody library for ovarian cancer biomarker discovery. Molecular and Cellular Proteomics, 2010; DOI: 10.1074/mcp.M900496-MCP200

Cite This Page:

Arizona State University. "Blood relations: New study explores early detection of ovarian cancer." ScienceDaily. ScienceDaily, 17 June 2010. <www.sciencedaily.com/releases/2010/06/100616141655.htm>.
Arizona State University. (2010, June 17). Blood relations: New study explores early detection of ovarian cancer. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/06/100616141655.htm
Arizona State University. "Blood relations: New study explores early detection of ovarian cancer." ScienceDaily. www.sciencedaily.com/releases/2010/06/100616141655.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins