Featured Research

from universities, journals, and other organizations

Supercomputer provides new insights into the vibrations of water

Date:
June 23, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
Using Terahertz spectroscopy, chemists recently detected the surprisingly long-ranged influence of solvated biomolecules on the "dance" of surrounding water molecules. With extensive simulations on a supercomputer, they have now succeeded in describing this choreography in detail.

Dance of water molecules.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

Liquid water, as well as other liquids, exhibits characteristic vibrations upon excitation with electromagnetic waves over a wide spectral range. At frequencies which correspond to infrared light, vibrational motions within single molecules can be observed.

"At lower frequencies, in the Terahertz range, which is situated between the frequencies of the infrared light and microwave radiation in the electromagnetic spectrum, far more complex motions take place involving motions of whole water molecules relative to each other," explains Terahertz specialist Prof. Havenith-Newen. "In particular, these motions involve closing and breaking of the three dimensional hydrogen bond network of water, which interconnects water molecules and is responsible for the unique properties of water."

Observations of this kind have become feasible only lately with the development of advanced laser light sources. Studies performed at the RUB lead to the discovery of an unexpectedly long ranged influence of biologically relevant solutes, such as sugars and proteins, on the motions of water, the so-called "Terahertz-dance" of water. In the vicinity of the molecule, water motion is highly ordered: "While water molecules usually behave like disco dancers, in the proximity of biomolecules they perform a minuet," says Prof. Havenith-Newen. However, until now a detailed explanation of this unexpected phenomenon was not available.

The choreography of water

The underlying vibrational motions between water molecules are extremely complex. So far it was not possible to explain the experimental result with a molecular mechanism. In a joint effort, scientists of both departments performed molecular dynamics simulations of water, which in contrast to conventional approaches, are not based on empirical models for the interactions between molecules, but employ ab initio calculations. For the first time such simulations have been carried out on a scale which allows for statistically meaningful statements about the comparably slow vibrational motions between the water molecules. These extensive calculations were supported by the Leibniz Computing Center in Garching near Munich, which granted access to computational resources on the national supercomputer HLRB2. The use of newly developed analysis methods yielded a precise description of the THz vibrations in water as a correlated motion of many water molecules: a sort of motion of water droplets within the water. "Therefore we have uncovered 'the choreography of pure water' at low frequencies," says Prof. Marx.

Perturbed choreography

If another substance, such as a protein, is dissolved in water, it "perturbs" this choreography at its interface. This allows for a qualitative understanding of the experimental results using THz spectroscopy. "The correlated motions of water molecules at THz frequencies exhibit entirely new characteristics, which are significantly different from the well-known infrared vibrations of the chemical bonds within a molecule," explains Prof. Marx. As this study shows, the latter are well described as localized vibrational motions within single molecules as well as direct neighbors. This is in stark contrast to the choreography of the THz dance of water: Here, many water molecules, connected only indirectly via hydrogen bonds, move together in a concerted motion in space and time. It is the change of this correlation, evoked by the biomolecule-water interface, which is detected by THz spectroscopy and used for technological applications.

Research Department "Interfacial Systems Chemistry"

The interdisciplinary cooperation started within the Research Department "Interfacial Systems Chemistry" of the RUB and was supported by the Humboldt foundation. In May 2010 the results were presented to the scientific community for the first time during the Leopoldina symposium: "The Complexity Connecting Biomolecular Structure and Solvation Dynamics" held at the RUB.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith, D. Marx. Dissecting the THz spectrum of liquid water from first principles via correlations in time and space. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.0914885107

Cite This Page:

Ruhr-Universitaet-Bochum. "Supercomputer provides new insights into the vibrations of water." ScienceDaily. ScienceDaily, 23 June 2010. <www.sciencedaily.com/releases/2010/06/100623085831.htm>.
Ruhr-Universitaet-Bochum. (2010, June 23). Supercomputer provides new insights into the vibrations of water. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/06/100623085831.htm
Ruhr-Universitaet-Bochum. "Supercomputer provides new insights into the vibrations of water." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623085831.htm (accessed April 19, 2014).

Share This



More Matter & Energy News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins