Featured Research

from universities, journals, and other organizations

To predict atherosclerosis, follow the disturbed blood flow

Date:
July 12, 2010
Source:
Emory University
Summary:
A new animal model of atherosclerosis shows that "disturbed flow" in an artery leads to inflammation followed by clogging of the artery. The model provides insight into how bad blood flow initiates atherosclerosis or good flow such as that improved by aerobic exercise protects against the disease and allows the identification of hundreds of genes turned on or off in atherosclerosis' initial stages.

The gene LMO4 is turned on in the middle boxed region, but not the other two, because of "disturbed flow" in that area of the aorta.
Credit: Hanjoong Jo

A new animal model of atherosclerosis has allowed researchers to identify a host of genes turned on or off during the initial stages of the process, before a plaque appears in the affected blood vessel.

The results were published June 15 in Blood, the journal of the American Society of Hematology.

The model is the first to definitively show that disturbances in the patterns of blood flow in an artery determine where atherosclerosis will later appear, says senior author Hanjoong Jo, PhD, Ada Lee and Pete Correll professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

The first author of the paper is Chih-Wen Ni, a graduate student in biomedical engineering.

Atherosclerosis describes a process where the arterial walls thicken and harden, because of a gradual build-up of white blood cells, lipids and cholesterol. This process can lead to plaque formation, and eventually to heart attacks and strokes.

Jo says his team's results could provide insight into how aerobic exercise, known to provide protection against atherosclerosis, improves the patterns of blood flow and encourages protective genes to turn on in blood vessels.

Scientists have previously observed that atherosclerosis occurs preferentially in branched or curved regions of arteries, because of the "disturbed flow" branches and curves create. Constant, regular flow of blood appears to promote healthy blood vessels, while low or erratic flow can lead to disease.

The standard laboratory model of atherosclerosis has scientists feeding a high-fat diet to mice with mutations in a gene (ApoE) involved in removing fat and cholesterol from the blood. Even then, atherosclerosis usually takes a few months to develop. In these models, clogs in a mouse's arteries tend to appear in certain places, such as the aortic arch, but flow patterns are set up at birth and thus are poor gauges of cause and effect, Jo says.

"We have developed a model where we disturb blood flow in the carotid artery by partial ligation, and atherosclerosis appears within two weeks," he says. "This rapid progression allows us to demonstrate cause and effect, and to examine the landmark events at the beginning of the process."

Jo says that endothelial cells, which form the inner lining of blood vessels, are equipped with sensors that detect changes in fluid flow.

"Disturbed flow is what causes the endothelial cells to become inflamed," he says.

The inflammation resulting from "bad flow" conditions in a stretch of artery causes white blood cells to accumulate there, followed by buildup of cholesterol and lipids and plaque formation.

Just 48 hours after blood flow in the carotid arteries was disturbed, Ni and colleagues dissected the carotid arteries from the mice and used genome-wide microarray technology to identify hundreds of genes that were turned on or off in the endothelial cells.

In past experiments, scientists grew endothelial cells in dishes to probe how different patterns of fluid flow affected their patterns of genes. However, growing cells in dishes alters them enough that many of the genes Jo's team found have not been identified before in this context.

For example, the team showed that the gene LMO4 -- not previously known to be involved in atherosclerosis -- is turned on in their mouse model and also in human coronary arteries. Scientists studying breast cancer think LMO4 is involved in tumor migration and invasion, making an interesting parallel between atherosclerosis and cancer, Jo says.

He says his laboratory is now probing which of the newly identified genes are most important in atherosclerosis and searching for ways to manipulate them with drugs or genetic techniques, with an eye towards possible diagnostic and pharmaceutical applications.

The research was supported by the National Heart, Lung and Blood Institute, the Ada Lee and Pete Correll Professorship at Emory and Georgia Tech, and the World Class University project at Ewha Womans University in South Korea.


Story Source:

The above story is based on materials provided by Emory University. Note: Materials may be edited for content and length.


Journal References:

  1. C.-W. Ni, H. Qiu, A. Rezvan, K. Kwon, D. Nam, D. J. Son, J. E. Visvader, H. Jo. Discovery of novel mechanosensitive genes in vivo using mouse carotid artery endothelium exposed to disturbed flow. Blood, 2010; DOI: 10.1182/blood-2010-04-278192
  2. D. Nam, C.-W. Ni, A. Rezvan, J. Suo, K. Budzyn, A. Llanos, D. Harrison, D. Giddens, H. Jo. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. AJP: Heart and Circulatory Physiology, 2009; 297 (4): H1535 DOI: 10.1152/ajpheart.00510.2009

Cite This Page:

Emory University. "To predict atherosclerosis, follow the disturbed blood flow." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/06/100623140922.htm>.
Emory University. (2010, July 12). To predict atherosclerosis, follow the disturbed blood flow. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/06/100623140922.htm
Emory University. "To predict atherosclerosis, follow the disturbed blood flow." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623140922.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins