Featured Research

from universities, journals, and other organizations

Genetic inspiration could show the way to revolutionize information technology

Date:
July 4, 2010
Source:
University of Reading
Summary:
Chemists in the UK have created a synthetic form of DNA that could transform how digital information is processed and stored.

Chemists at the University of Reading have created a synthetic form of DNA that could transform how digital information is processed and stored.

Related Articles


Just as the information in a book is made up of a linear sequence of letters, so the information needed for all living things to function and reproduce is embodied in a linear sequence of chemical units. These make up the chains of DNA and RNA, where an enormous amount of information (the 'genome') is stored in a very small space to direct the molecular processes of life.

A new paper, which appears in Nature Chemistry on June 27, shows for the first time that many of the features of biological information processing can be reproduced in synthetic polymer chains.

The Reading team, led by Howard Colquhoun, Professor of Materials Chemistry in the Department of Chemistry, has designed and synthesised short sequences of a synthetic, information-bearing polymer.

In the long term, researchers believe this could revolutionise the future of digital information. Synthetic polymer systems could allow information densities several million times higher than current systems.

Crucial to the work is the creation of tweezer-shaped molecules that pick out sequence-information along a polymer chain. The two arms of the tweezer 'feel' the different sequences available and then clamp on to the chain at the precise sequence where the chain structure and tweezer structure are most complementary.

Several tweezer molecules can bind next to one another on the polymer chain, allowing them to 'read' and translate extended, long-range polymer-sequence information. Most notable is that different types of tweezer molecules start reading at different positions on the chain. This selectivity means different types of information can be read from the same sequence which increases the amount of information available.

Professor Colquhoun said: "This type of process is paralleled in the processing of genetic information. In the future, we plan to develop methods for writing new information into the polymer chains with the long-term aim of developing wholly synthetic information technology, working at the molecular level.


Story Source:

The above story is based on materials provided by University of Reading. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhixue Zhu, Christine J. Cardin, Yu Gan, Howard M. Colquhoun. Sequence-selective assembly of tweezer molecules on linear templates enables frameshift-reading of sequence information. Nature Chemistry, 2010; DOI: 10.1038/nchem.699

Cite This Page:

University of Reading. "Genetic inspiration could show the way to revolutionize information technology." ScienceDaily. ScienceDaily, 4 July 2010. <www.sciencedaily.com/releases/2010/06/100629081750.htm>.
University of Reading. (2010, July 4). Genetic inspiration could show the way to revolutionize information technology. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2010/06/100629081750.htm
University of Reading. "Genetic inspiration could show the way to revolutionize information technology." ScienceDaily. www.sciencedaily.com/releases/2010/06/100629081750.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

No, A Google Exec Did Not Predict An Internet Apocalypse

No, A Google Exec Did Not Predict An Internet Apocalypse

Newsy (Jan. 24, 2015) — Earlier this week, a Google exec made headlines for saying "the Internet will disappear," but that doesn&apos;t quite mean what it sounds like. Video provided by Newsy
Powered by NewsLook.com
Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Tim Cook Made 8 Times Less Than Another Apple Exec In 2014

Newsy (Jan. 23, 2015) — Tim Cook&apos;s total compensation more than doubled in 2014 to $9.2 million, but his pay was still less than four other Apple executives. Video provided by Newsy
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) — In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins