Featured Research

from universities, journals, and other organizations

Researchers identify what makes MRSA lethal

Date:
July 2, 2010
Source:
University of Bath
Summary:
Scientists studying the so-called “superbug” MRSA have identified one of the components responsible for making it so deadly. Scientists have proven for the first time that a protein called FnBP is central to the bacteria's ability to invade the body's organs.

Dr Andrew Edwards and Dr Ruth Massey have proven for the first time the role of FnBP in MRSA infection.
Credit: Nic Delves-Broughton, University of Bath

Scientists studying the so-called "superbug" MRSA have identified one of the components responsible for making it so deadly.

Related Articles


Staphylococcus aureus is a type of bacteria commonly found on the skin that is relatively harmless unless it gets into the bloodstream, where it can cause blood poisoning and create abscesses in organs such as the heart and brain.

MRSA, or Methicillin Resistant Staphylococcus aureus, can be particularly dangerous because it is resistant to treatment with most antibiotics.

Researchers at the University of Bath, in collaboration with the Universities of York and Gothenburg, investigated how the bug moves from the bloodstream to invade organs in the body.

They studied Fibronectin Binding Protein (FnBP), a protein on the surface of the bacterium that enables it to bind to human cells and infect them.

The Wellcome Trust-funded study, published in the open access journal PLoS Pathogens, proved for the first time this protein is central to the bacteria's ability to invade the organs.

The next step of their research will be to try and stop the bacteria invading human cells by using antibodies to block FnBP binding.

Dr Andrew Edwards, a postdoctoral researcher from the University of Bath's Department of Biology & Biochemistry, explained: "The 3D shape of FnBP interested us because it contains a portion that's repeated lots of times in the overall structure. We wanted to find out why it needs so many repeats.

"We found that although only one repeat was needed to bind to cells, altering the protein to contain a smaller number of repeats reduced the strength of binding and resulted in a less severe infection."

Dr Ruth Massey, Senior Lecturer from the University of Bath's Department of Biology & Biochemistry, added: "If we can develop a treatment that blocks the binding of FnBP to cells, it could help stop the infection spreading to the major organs in the body.

"Whilst such a treatment wouldn't kill the bacteria, it could be used in parallel with antibiotics to stop the infection becoming more dangerous and spreading to the patient's organs."

The researchers will spend the next three years working to block FnBP binding, and predict that a treatment for patients could be developed in as little as a decade.


Story Source:

The above story is based on materials provided by University of Bath. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew M. Edwards, Jennifer R. Potts, Elisabet Josefsson, Ruth C. Massey, Ambrose Cheung. Staphylococcus aureus Host Cell Invasion and Virulence in Sepsis Is Facilitated by the Multiple Repeats within FnBPA. PLoS Pathogens, 2010; 6 (6): e1000964 DOI: 10.1371/journal.ppat.1000964

Cite This Page:

University of Bath. "Researchers identify what makes MRSA lethal." ScienceDaily. ScienceDaily, 2 July 2010. <www.sciencedaily.com/releases/2010/06/100630213550.htm>.
University of Bath. (2010, July 2). Researchers identify what makes MRSA lethal. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/06/100630213550.htm
University of Bath. "Researchers identify what makes MRSA lethal." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630213550.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins