Featured Research

from universities, journals, and other organizations

Researchers identify what makes MRSA lethal

Date:
July 2, 2010
Source:
University of Bath
Summary:
Scientists studying the so-called “superbug” MRSA have identified one of the components responsible for making it so deadly. Scientists have proven for the first time that a protein called FnBP is central to the bacteria's ability to invade the body's organs.

Dr Andrew Edwards and Dr Ruth Massey have proven for the first time the role of FnBP in MRSA infection.
Credit: Nic Delves-Broughton, University of Bath

Scientists studying the so-called "superbug" MRSA have identified one of the components responsible for making it so deadly.

Staphylococcus aureus is a type of bacteria commonly found on the skin that is relatively harmless unless it gets into the bloodstream, where it can cause blood poisoning and create abscesses in organs such as the heart and brain.

MRSA, or Methicillin Resistant Staphylococcus aureus, can be particularly dangerous because it is resistant to treatment with most antibiotics.

Researchers at the University of Bath, in collaboration with the Universities of York and Gothenburg, investigated how the bug moves from the bloodstream to invade organs in the body.

They studied Fibronectin Binding Protein (FnBP), a protein on the surface of the bacterium that enables it to bind to human cells and infect them.

The Wellcome Trust-funded study, published in the open access journal PLoS Pathogens, proved for the first time this protein is central to the bacteria's ability to invade the organs.

The next step of their research will be to try and stop the bacteria invading human cells by using antibodies to block FnBP binding.

Dr Andrew Edwards, a postdoctoral researcher from the University of Bath's Department of Biology & Biochemistry, explained: "The 3D shape of FnBP interested us because it contains a portion that's repeated lots of times in the overall structure. We wanted to find out why it needs so many repeats.

"We found that although only one repeat was needed to bind to cells, altering the protein to contain a smaller number of repeats reduced the strength of binding and resulted in a less severe infection."

Dr Ruth Massey, Senior Lecturer from the University of Bath's Department of Biology & Biochemistry, added: "If we can develop a treatment that blocks the binding of FnBP to cells, it could help stop the infection spreading to the major organs in the body.

"Whilst such a treatment wouldn't kill the bacteria, it could be used in parallel with antibiotics to stop the infection becoming more dangerous and spreading to the patient's organs."

The researchers will spend the next three years working to block FnBP binding, and predict that a treatment for patients could be developed in as little as a decade.


Story Source:

The above story is based on materials provided by University of Bath. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew M. Edwards, Jennifer R. Potts, Elisabet Josefsson, Ruth C. Massey, Ambrose Cheung. Staphylococcus aureus Host Cell Invasion and Virulence in Sepsis Is Facilitated by the Multiple Repeats within FnBPA. PLoS Pathogens, 2010; 6 (6): e1000964 DOI: 10.1371/journal.ppat.1000964

Cite This Page:

University of Bath. "Researchers identify what makes MRSA lethal." ScienceDaily. ScienceDaily, 2 July 2010. <www.sciencedaily.com/releases/2010/06/100630213550.htm>.
University of Bath. (2010, July 2). Researchers identify what makes MRSA lethal. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/06/100630213550.htm
University of Bath. "Researchers identify what makes MRSA lethal." ScienceDaily. www.sciencedaily.com/releases/2010/06/100630213550.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins