Featured Research

from universities, journals, and other organizations

Cancer stem cells are not 'one size fits all,' lung cancer models show

Date:
July 5, 2010
Source:
Children's Hospital Boston
Summary:
Cancer stem cells have enticed scientists because of the potential to provide more durable and widespread cancer cures by identifying and targeting the tumor's most voracious cells. Now, researchers have identified cancer stem cells in a model of the most common form of human lung cancer and, more significantly, have found that the cancer stem cells may vary from tumor to tumor, depending upon the tumor's genetic signature.

Cancer stem cells have enticed scientists because of the potential to provide more durable and widespread cancer cures by identifying and targeting the tumor's most voracious cells. Now, researchers at Children's Hospital Boston and their colleagues have identified cancer stem cells in a model of the most common form of human lung cancer and, more significantly, have found that the cancer stem cells may vary from tumor to tumor, depending upon the tumor's genetic signature.

"Our study shows the cancer stem cell hypothesis is true in some lung cancers," said senior author Carla Kim, PhD, an assistant professor in the Stem Cell Program at Children's Hospital Boston and the department of genetics at Harvard Medical School (HMS). "It also shows, from one lung cancer to another, the cancer stem cells are not the same."

Cancer stem cells are a subset of cancer cells believed to elude conventional treatments and eventually regenerate a tumor. Experimentally, they show up as cells that can be extracted from a tumor and transplanted to form a new tumor, from which the same tumor-propagating cells can again be extracted and transplanted with the same result. According to Kim, this is the first serial transplantation study to identify lung cancer tumor-propagating cells.

The findings, published in the July 2 Cell Stem Cell, connect the cancer stem cell hypothesis with molecular profiling of tumors (sometimes called personalized medicine). The results may allow researchers to combine stem cell biology with genetic typing to identify what drives the cancerous behavior of each patient's tumor and to develop new therapeutic targets.

In their study, Kim and her colleagues looked at mouse models of the three most commonly mutated genes in human lung cancer -- K-RAS and p53 (two genes predominantly mutated in adenocarcinomas of smokers) and one gene more often found mutated in non-smokers (EGFR). Led by HMS graduate student Stephen Curtis, the team identified cancer stem cells in a model combining the K-RAS and p53 oncogenic mutations. When the researchers serially transplanted the cancer stem cells from this model into the lungs of mice, new tumors formed.

The cancer stem cells in the K-RAS/p53 mice sported one telltale molecule (Sca1), found on the surface of a tiny 1 percent of all the tumor cells. In two other models of lung cancer, cells with that molecular marker were just as rare, but they failed to distinguish themselves as cancer stem cells. In the K-RAS model, all tumor cells were equally likely to propagate tumors. In the EGFR model, only the tumor cells lacking that molecule could propagate tumors.

"Our paper says the identity of the cancer stem cells could be different between one patient's lung tumor and another's," said Kim. "This will be crucial for researchers to consider as they design therapies to target specific cancer cell populations." The team did not test any drug interventions or human lung cancer samples. These are the next important steps, she said.

The findings may also help other researchers identify cancer stem cells by taking into account the cancer's genetic signature. For patients, optimal treatment may rely on a combination of the tumor genotype and its tumor-propagating cell phenotype.

"Our idea is that, even though many patients' tumors may look similar, in order to offer truly personalized and effective targeted therapy, we need to know the genotype of a patient's tumor and successfully identify the cells that maintain that tumor," said Curtis.

Funding was provided by the U.S. Department of Defense, Air Force, Office of Scientific Research, National Defense Science and Engineering Fellowship; the American Cancer Society; Dana Farber Harvard Cancer Center Lung Cancer SPORE grant; the V Foundation; the Harvard Stem Cell Institute; National Institutes of Health/National Cancer Institute; and The Lung Cancer Alliance.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stephen J. Curtis, Kerstin W. Sinkevicius, Danan Li, Allison N. Lau, Rebecca R. Roach, Raffaella Zamponi, Amber E. Woolfenden, David G. Kirsch, Kwok-Kin Wong, Carla F. Kim. Primary Tumor Genotype Is an Important Determinant in Identification of Lung Cancer Propagating Cells. Cell Stem Cell, Volume 7, Issue 1, 127-133, 2 July 2010 DOI: 10.1016/j.stem.2010.05.021

Cite This Page:

Children's Hospital Boston. "Cancer stem cells are not 'one size fits all,' lung cancer models show." ScienceDaily. ScienceDaily, 5 July 2010. <www.sciencedaily.com/releases/2010/07/100701131447.htm>.
Children's Hospital Boston. (2010, July 5). Cancer stem cells are not 'one size fits all,' lung cancer models show. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/07/100701131447.htm
Children's Hospital Boston. "Cancer stem cells are not 'one size fits all,' lung cancer models show." ScienceDaily. www.sciencedaily.com/releases/2010/07/100701131447.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins