Featured Research

from universities, journals, and other organizations

Researchers discover trigger to early, effective antibody response

Date:
July 9, 2010
Source:
National Jewish Health
Summary:
Researchers have discovered a trigger that induces B cells to produce effective, long-lived antibodies early in the immune response. A molecule that binds toll-like receptors doubles the early antibody response, and shifts it to a more effective, IgG form. The findings support the emerging concept of "bridge immunity," which links the innate and adaptive arms of the immune response. They may also lead to the development of better vaccines.

Researchers at National Jewish Health have discovered a trigger that induces B cells to produce effective and long-lived antibodies early in the immune response. They found that a molecule that binds toll-like receptors (TLR) doubles the early antibody response to an antigen, and shifts it to a more effective, IgG form.

Related Articles


The findings, published online and in the July 5, 2010, issue of The Journal of Experimental Medicine, support the emerging concept of 'bridge immunity,' which links the innate and adaptive arms of the immune response. They may also lead to the development of better vaccines.

"In our experiments, a molecule that interacts with the innate immune system stimulates follicular B cells, which are recognized as part of the adaptive immune system," said senior author Raul Torres, PhD, Associate Professor of Immunology at National Jewish Health. "Our data provide evidence of a continuous immune response, rather than two distinct and separate arms."

A gap in the immune response?

The innate immune response begins within minutes to hours after an infection begins by recognizing general molecular patterns associated with infectious organisms, such as components of bacterial cell walls. It is rapid but not particularly focused. The adaptive immune response detects proteins associated with specific invaders, and ultimately produces highly targeted antibodies that help neutralize foreign organisms. That process begins several days after the infection has begun, and does not reach full strength for 10 days to two weeks on average.

For many years, scientists thought the two arms of the immune response acted separately and independently. If that were true, however, there would be a gap in protection after the innate response fades and before the adaptive response kicks in. In recent years, scientists have begun realizing that the two arms of the immune system communicate with each other to fill that gap.

Dr. Torres and Cristina L. Swanson PhD, a postdoctoral fellow in his lab, studied a process that contains elements of both innate and adaptive immunity, known as the T-cell independent antibody response. While B cells are most widely recognized for their contributions to the adaptive immune response, some begin producing antibodies soon after an infection begins. Instead of detecting a single specific protein associated with the invader, they detect repetitive molecules linked together, such as those found in a bacterial cell wall or viral capsid.

This process has been studied for many years using synthetic molecules as model antigens. Drs. Torres Swanson thought that experiments using just the synthetic antigens did not accurately reflect what occurs in the real world. They reasoned that B cells would almost never encounter a bacterial cell wall or viral capsid alone; an intact cell wall would almost always also contain other molecules that activate the innate immune response as well. So the researchers decided to inject mice with the synthetic antigen plus a molecule that binds an innate receptor, known as TLR ligand. Dr. Swanson performed the majority of the experiments as part of her doctoral thesis work.

Striking results

The results were striking. Early antibody levels doubled when the TLR ligand was added. The mix of antibodies shifted as well, from 61 percent IgM to 82 percent IgG, which is a highly effective weapon against disease-causing organisms. The IgG levels remained elevated in mice for 182 days, as long as the researchers measured them. The long-lived persistence of this effective antibody suggests that the observations could be adapted to make more effective vaccines.

The researchers found that the TLR ligand spurred other cells to release type I interferon. That, in turn, activated follicular B cells to release the IgG antibodies. Prior to that, scientists had believed that follicular B cells participated in the adaptive immune response later during the infection.

"Our experiments not only provide further evidence for bridge immunity, but also demonstrate a precise mechanism by which it occurs," said Dr. Swanson, first author on the paper.


Story Source:

The above story is based on materials provided by National Jewish Health. Note: Materials may be edited for content and length.


Cite This Page:

National Jewish Health. "Researchers discover trigger to early, effective antibody response." ScienceDaily. ScienceDaily, 9 July 2010. <www.sciencedaily.com/releases/2010/07/100706130320.htm>.
National Jewish Health. (2010, July 9). Researchers discover trigger to early, effective antibody response. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/07/100706130320.htm
National Jewish Health. "Researchers discover trigger to early, effective antibody response." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706130320.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins