Featured Research

from universities, journals, and other organizations

New system to reduce heating costs in cold climates

Date:
July 13, 2010
Source:
Purdue University
Summary:
A new type of heat pump under development could allow residents in cold climates to cut their heating bills in half.

Frederick Welck, at left, an intern from Institut für Technische Chemie in Clausthal-Zellerfeld, Germany, and mechanical engineering doctoral student Christian Bach work with an experimental setup for testing valves as part of research led by Purdue University to develop more efficient heat pumps. The improved efficiency could allow residents in cold climates to cut their heating bills in half, in research funded by the California Energy Commission. A follow-up project, funded by the US Department of Energy, will build on this and previous work that began about five years ago at Purdue's Ray W. Herrick Laboratories.
Credit: Purdue University photo/Mark Simons

A new type of heat pump being developed at Purdue University could allow residents in cold climates to cut their heating bills in half.

The research, funded by the U.S. Department of Energy, builds on previous work that began about five years ago at Purdue's Ray W. Herrick Laboratories, said James Braun, a professor of mechanical engineering.

Heat pumps provide heating in winter and cooling in summer but are not efficient in extreme cold climates, such as Minneapolis winters.

"With this technology we can maintain the efficiency of the heat pump even when it gets pretty cold outside," said Eckhard Groll, a professor of mechanical engineering who is working on the project with Braun and W. Travis Horton, an assistant professor of civil engineering.

The innovation aims to improve efficiency in general but is especially practical for boosting performance in cold climates. The new heat pumps might be half as expensive to operate as heating technologies now used in cold regions where natural gas is unavailable and residents rely on electric heaters and liquid propane.

"We'll be able to extend the geographical range where heat pumps can apply," Horton said. "So this could open up a whole new market."

Researchers expect to complete a prototype by the end of the three-year, $1.3 million project. The research, which also involves three doctoral students, is a partnership with Emerson Climate Technologies Inc. and Carrier Corp. Emerson will work with researchers to create the prototype heat pump, and Carrier will integrate the new heat pump into a complete system.

Two research papers about the work will be presented during the 13th International Refrigeration and Air Conditioning Conference, the 20th International Compressor Engineering Conference and the first International High Performance Buildings Conference from July 12-15 at Purdue. The papers were written by mechanical engineering doctoral students Margaret Mathison and Ian Bell.

The new technology works by modifying the conventional vapor-compression cycle behind standard air conditioning and refrigeration.

"This could be a relatively simple modification to existing heat pumps, refrigeration and air conditioning systems," Braun said.

The standard vapor-compression cycle has four stages: refrigerant is compressed as a vapor, condenses into a liquid, expands to a mixture of liquid and vapor, and then evaporates.

The project will investigate two cooling approaches during the compression process. In one approach, relatively large amounts of oil are injected into the compressor to absorb heat generated throughout the compression stage. In the second approach, a mixture of liquid and vapor refrigerant from the expansion stage is injected at various points during compression to provide cooling. The added steps improve the compression process while also reducing energy losses due to friction in the expansion stage.

"Cooling the compressor keeps the refrigerant dense, and that's important because it takes less energy to compress something that's more dense," Braun said.

The researchers are developing a system for precisely controlling the flow of refrigerant from the evaporation stage into the compression stage using a series of small valves. A critical component of the new heat pump is a "scroll compressor," which uses a rotating, scroll-shaped mechanism to compress refrigerant. Domestic heat pumps normally use reciprocating compressors, in which a piston compresses refrigerant.

"You can't inject a liquid into a reciprocating compressor, whereas you can with a scroll compressor, which is uniquely suited for this modification," Groll said. "Also, an important part of our project will be to determine the efficiency of a machine that pumps liquid while also compressing gas, so there will be a lot of computational modeling involved."

The work grew out of research into the Ericsson cycle, an exotic refrigeration technology in which liquid is added to coolant as it is being compressed. The Ericson cycle, however, does not use the vapor-compression cycle because the gas never turns to liquid.

The Purdue researchers also are working in a related project with the California Energy Commission.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "New system to reduce heating costs in cold climates." ScienceDaily. ScienceDaily, 13 July 2010. <www.sciencedaily.com/releases/2010/07/100707152219.htm>.
Purdue University. (2010, July 13). New system to reduce heating costs in cold climates. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/07/100707152219.htm
Purdue University. "New system to reduce heating costs in cold climates." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707152219.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) — The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins