Featured Research

from universities, journals, and other organizations

DNA through graphene nanopores

Date:
July 12, 2010
Source:
Delft University of Technology
Summary:
Researchers in the Netherlands have developed a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. The scientists report a novel technique to fabricate tiny holes in a layer of graphene (a carbon layer with a thickness of only 1 atom) and they managed to detect the motion of individual DNA molecules that travel through such a hole.

Artistic rendering of A DNA molecule traversing through a small hole made in an atomically thin layer of graphene that is located on a Si/SiN chip.
Credit: Image courtesy Cees Dekker lab TU Delft / Tremani

A team of researchers from Delft University of Technology announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In a paper entitled 'DNA Translocation through Graphene Nanopores' (published online in Nano Letters), they report a novel technique to fabricate tiny holes in a layer of graphene (a carbon layer with a thickness of only 1 atom) and they managed to detect the motion of individual DNA molecules that travel through such a hole.

There is a worldwide race to develop fast and low-cost strategies to sequence DNA, that is, to read off the content of our genome. Particularly promising for the next generation of sequencing are devices where one measures on single molecules. Imagine a single DNA molecule from one of your cells (3 billion bases, 1 meter long if you would stretch it from head to tail) that is read -- base per base -- in real time while sliding between two of your fingers. This is what postdoc dr. Gregory Schneider in the group of professor Cees Dekker and colleagues from the Kavli Institute of Nanoscience have in mind. They now demonstrated a first step in that direction: To slide a single molecule of DNA through a tiny nanoscale hole made in the thinnest membrane that nature can offer, a 1-atom thin layer of graphene.

Graphene is a unique and very special material, and yet widely available: Everyone has graphene at home: graphite is made of layers of graphene and occurs in for example the carbon of pencils, charcoal, or candle soot. But in this research, graphene is used because of that special property that one can make single-atom-thin monolayers of graphene. Why is such an ultrathin membrane important? Let's go back to that wire sliding between your fingers. The distance between two bases in DNA is very small, about half a nanometer, which is 100000 times smaller than the width of a human hair! To read off each base along the DNA, one therefore needs a recorder that is smaller than that half nanometer. If your fingers can be scaled down to that size, you are in business. And here's where these atomically thin graphene membranes are crucial.

What Schneider and coworkers did was to fabricate a nanometer-scale hole -- called a nanopore -- in the graphene membrane, which represents the ideal recorder. They demonstrated that single molecules of DNA in water can be pulled through such a graphene nanopore and, importantly, that each DNA molecule can be detected as it passes through the pore. The detection technique is very simple: upon applying an electrical voltage across the nanopore, ions in the solution start to flow through the hole and a current is detected. This current gets smaller whenever a DNA molecule enters the nanopore and partly blocks the flow of ions. Each single DNA molecule that slides through the pore is thus detected by a drop in the current.

The DNA moves base per base through the nanopore. With the atomically thin graphene nanopore one in principle has the potential for reading off the DNA sequence, base per base. A number of groups worldwide have been trying to realize graphene nanopores. Schneider et al are the first to report their results.

DNA translocation through nanopores has been developed before by the Dekker lab and others, for example using SiN membranes. Graphene nanopores offer new opportunities -- many more than sequencing. Since graphene, unlike SiN, is an excellent conductor, an obvious next step is using the intrinsic conductive properties of graphene. Nanopores offer a range of opportunities of sensors for science and applications.


Story Source:

The above story is based on materials provided by Delft University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Grégory F. Schneider, Stefan W. Kowalczyk, Victor E. Calado, Grégory Pandraud, Henny W. Zandbergen, Lieven M. K. Vandersypen, Cees Dekker. DNA Translocation through Graphene Nanopores. Nano Letters, 2010; 100707145935002 DOI: 10.1021/nl102069z

Cite This Page:

Delft University of Technology. "DNA through graphene nanopores." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100710101019.htm>.
Delft University of Technology. (2010, July 12). DNA through graphene nanopores. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2010/07/100710101019.htm
Delft University of Technology. "DNA through graphene nanopores." ScienceDaily. www.sciencedaily.com/releases/2010/07/100710101019.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins