Featured Research

from universities, journals, and other organizations

DNA through graphene nanopores

Date:
July 12, 2010
Source:
Delft University of Technology
Summary:
Researchers in the Netherlands have developed a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. The scientists report a novel technique to fabricate tiny holes in a layer of graphene (a carbon layer with a thickness of only 1 atom) and they managed to detect the motion of individual DNA molecules that travel through such a hole.

Artistic rendering of A DNA molecule traversing through a small hole made in an atomically thin layer of graphene that is located on a Si/SiN chip.
Credit: Image courtesy Cees Dekker lab TU Delft / Tremani

A team of researchers from Delft University of Technology announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In a paper entitled 'DNA Translocation through Graphene Nanopores' (published online in Nano Letters), they report a novel technique to fabricate tiny holes in a layer of graphene (a carbon layer with a thickness of only 1 atom) and they managed to detect the motion of individual DNA molecules that travel through such a hole.

There is a worldwide race to develop fast and low-cost strategies to sequence DNA, that is, to read off the content of our genome. Particularly promising for the next generation of sequencing are devices where one measures on single molecules. Imagine a single DNA molecule from one of your cells (3 billion bases, 1 meter long if you would stretch it from head to tail) that is read -- base per base -- in real time while sliding between two of your fingers. This is what postdoc dr. Gregory Schneider in the group of professor Cees Dekker and colleagues from the Kavli Institute of Nanoscience have in mind. They now demonstrated a first step in that direction: To slide a single molecule of DNA through a tiny nanoscale hole made in the thinnest membrane that nature can offer, a 1-atom thin layer of graphene.

Graphene is a unique and very special material, and yet widely available: Everyone has graphene at home: graphite is made of layers of graphene and occurs in for example the carbon of pencils, charcoal, or candle soot. But in this research, graphene is used because of that special property that one can make single-atom-thin monolayers of graphene. Why is such an ultrathin membrane important? Let's go back to that wire sliding between your fingers. The distance between two bases in DNA is very small, about half a nanometer, which is 100000 times smaller than the width of a human hair! To read off each base along the DNA, one therefore needs a recorder that is smaller than that half nanometer. If your fingers can be scaled down to that size, you are in business. And here's where these atomically thin graphene membranes are crucial.

What Schneider and coworkers did was to fabricate a nanometer-scale hole -- called a nanopore -- in the graphene membrane, which represents the ideal recorder. They demonstrated that single molecules of DNA in water can be pulled through such a graphene nanopore and, importantly, that each DNA molecule can be detected as it passes through the pore. The detection technique is very simple: upon applying an electrical voltage across the nanopore, ions in the solution start to flow through the hole and a current is detected. This current gets smaller whenever a DNA molecule enters the nanopore and partly blocks the flow of ions. Each single DNA molecule that slides through the pore is thus detected by a drop in the current.

The DNA moves base per base through the nanopore. With the atomically thin graphene nanopore one in principle has the potential for reading off the DNA sequence, base per base. A number of groups worldwide have been trying to realize graphene nanopores. Schneider et al are the first to report their results.

DNA translocation through nanopores has been developed before by the Dekker lab and others, for example using SiN membranes. Graphene nanopores offer new opportunities -- many more than sequencing. Since graphene, unlike SiN, is an excellent conductor, an obvious next step is using the intrinsic conductive properties of graphene. Nanopores offer a range of opportunities of sensors for science and applications.


Story Source:

The above story is based on materials provided by Delft University of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Grégory F. Schneider, Stefan W. Kowalczyk, Victor E. Calado, Grégory Pandraud, Henny W. Zandbergen, Lieven M. K. Vandersypen, Cees Dekker. DNA Translocation through Graphene Nanopores. Nano Letters, 2010; 100707145935002 DOI: 10.1021/nl102069z

Cite This Page:

Delft University of Technology. "DNA through graphene nanopores." ScienceDaily. ScienceDaily, 12 July 2010. <www.sciencedaily.com/releases/2010/07/100710101019.htm>.
Delft University of Technology. (2010, July 12). DNA through graphene nanopores. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/07/100710101019.htm
Delft University of Technology. "DNA through graphene nanopores." ScienceDaily. www.sciencedaily.com/releases/2010/07/100710101019.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins