Featured Research

from universities, journals, and other organizations

How psychiatric risk gene disrupts brain development

Date:
July 16, 2010
Source:
Cell Press
Summary:
Scientists are making progress towards a better understanding of the neuropathology associated with debilitating psychiatric illnesses like bipolar disorder and schizophrenia. New research reveals mechanisms that connect a known psychiatric risk gene to disruptions in brain cell proliferation and migration during development.

Scientists are making progress towards a better understanding of the neuropathology associated with debilitating psychiatric illnesses like bipolar disorder and schizophrenia. New research, published in the July 15 issue of the journal Neuron, reveals mechanisms that connect a known psychiatric risk gene to disruptions in brain cell proliferation and migration during development.

Related Articles


A research group led by Dr. Li-Huei Tsai from the Massachusetts Institute of Technology had recently discovered that the psychiatric risk gene, Disrupted in Schizophrenia-1 (DISC1), is an essential regulator of the proliferation of early brain cells (known as neural progenitor cells) via inhibition of a molecule called GSK3? and modulation of the Wnt signaling pathway. Disruptions in the Wnt pathway, which is critical for embryonic development, have previously been linked with developmental defects and with various human diseases.

"Our recent finding was particularly interesting because one of the actions of lithium, the most common mood disorder drug, is to inhibit GSK3?." explains Dr. Tsai. "Although DISC1 was one of the first psychiatric illness risk genes to be identified and we know that it plays a key role in brain development, the mechanisms by which DISC1 is regulated remain unknown." In this study, Dr. Tsai and colleagues built on earlier work and investigated how DISC1 is regulated during cortical development by looking for novel DISC1-interacting proteins.

The researchers discovered a key interaction between DISC1 and a protein called Dixdc1 which is the mammalian version of a nonmammalian Wnt signaling molecule. Dixdc1 and DISC1 interacted to regulate neural progenitor proliferation via modulation of Wnt/GSK3? signaling. Interestingly, although DISC1 and Dixdc1 were both essential for neural migration, the Wnt/GSK3? pathway was not required for migration. It appears as if Dixdc1 integrates DISC1 into Wnt-dependent and -independent signaling pathways.

"Our findings identify the novel Wnt signaling pathway gene, Dixdc1, as a critical regulator of DISC1 function during cortical development. This discovery suggests that Dixdc1 and DISC1 are involved in Wnt signaling at many levels in the nervous system and that mutations in DISC1 likely contribute to disease pathology by disrupting Wnt signaling during neural development and in the adult brain," concludes Dr. Tsai. "Future studies are needed to determine whether other candidate psychiatric risk genes also interact with Wnt signaling."

The researchers include Karun K. Singh, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Xuecai Ge, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA Yingwei Mao, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Laurel Drane, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Konstantinos Meletis, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Benjamin A. Samuels, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Columbia University, New York, NY; and Li-Huei Tsai, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karun K. Singh, Xuecai Ge, Yingwei Mao, Laurel Drane, Konstantinos Meletis, Benjamin A. Samuels, Li-Huei Tsai. Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development. Neuron, July 15, 2010 DOI: 10.1016/j.neuron.2010.06.002

Cite This Page:

Cell Press. "How psychiatric risk gene disrupts brain development." ScienceDaily. ScienceDaily, 16 July 2010. <www.sciencedaily.com/releases/2010/07/100714131236.htm>.
Cell Press. (2010, July 16). How psychiatric risk gene disrupts brain development. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/07/100714131236.htm
Cell Press. "How psychiatric risk gene disrupts brain development." ScienceDaily. www.sciencedaily.com/releases/2010/07/100714131236.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins