Featured Research

from universities, journals, and other organizations

How psychiatric risk gene disrupts brain development

Date:
July 16, 2010
Source:
Cell Press
Summary:
Scientists are making progress towards a better understanding of the neuropathology associated with debilitating psychiatric illnesses like bipolar disorder and schizophrenia. New research reveals mechanisms that connect a known psychiatric risk gene to disruptions in brain cell proliferation and migration during development.

Scientists are making progress towards a better understanding of the neuropathology associated with debilitating psychiatric illnesses like bipolar disorder and schizophrenia. New research, published in the July 15 issue of the journal Neuron, reveals mechanisms that connect a known psychiatric risk gene to disruptions in brain cell proliferation and migration during development.

Related Articles


A research group led by Dr. Li-Huei Tsai from the Massachusetts Institute of Technology had recently discovered that the psychiatric risk gene, Disrupted in Schizophrenia-1 (DISC1), is an essential regulator of the proliferation of early brain cells (known as neural progenitor cells) via inhibition of a molecule called GSK3? and modulation of the Wnt signaling pathway. Disruptions in the Wnt pathway, which is critical for embryonic development, have previously been linked with developmental defects and with various human diseases.

"Our recent finding was particularly interesting because one of the actions of lithium, the most common mood disorder drug, is to inhibit GSK3?." explains Dr. Tsai. "Although DISC1 was one of the first psychiatric illness risk genes to be identified and we know that it plays a key role in brain development, the mechanisms by which DISC1 is regulated remain unknown." In this study, Dr. Tsai and colleagues built on earlier work and investigated how DISC1 is regulated during cortical development by looking for novel DISC1-interacting proteins.

The researchers discovered a key interaction between DISC1 and a protein called Dixdc1 which is the mammalian version of a nonmammalian Wnt signaling molecule. Dixdc1 and DISC1 interacted to regulate neural progenitor proliferation via modulation of Wnt/GSK3? signaling. Interestingly, although DISC1 and Dixdc1 were both essential for neural migration, the Wnt/GSK3? pathway was not required for migration. It appears as if Dixdc1 integrates DISC1 into Wnt-dependent and -independent signaling pathways.

"Our findings identify the novel Wnt signaling pathway gene, Dixdc1, as a critical regulator of DISC1 function during cortical development. This discovery suggests that Dixdc1 and DISC1 are involved in Wnt signaling at many levels in the nervous system and that mutations in DISC1 likely contribute to disease pathology by disrupting Wnt signaling during neural development and in the adult brain," concludes Dr. Tsai. "Future studies are needed to determine whether other candidate psychiatric risk genes also interact with Wnt signaling."

The researchers include Karun K. Singh, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Xuecai Ge, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA Yingwei Mao, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Laurel Drane, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Konstantinos Meletis, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA; Benjamin A. Samuels, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Columbia University, New York, NY; and Li-Huei Tsai, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, Broad Institute, Cambridge, MA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karun K. Singh, Xuecai Ge, Yingwei Mao, Laurel Drane, Konstantinos Meletis, Benjamin A. Samuels, Li-Huei Tsai. Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development. Neuron, July 15, 2010 DOI: 10.1016/j.neuron.2010.06.002

Cite This Page:

Cell Press. "How psychiatric risk gene disrupts brain development." ScienceDaily. ScienceDaily, 16 July 2010. <www.sciencedaily.com/releases/2010/07/100714131236.htm>.
Cell Press. (2010, July 16). How psychiatric risk gene disrupts brain development. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/07/100714131236.htm
Cell Press. "How psychiatric risk gene disrupts brain development." ScienceDaily. www.sciencedaily.com/releases/2010/07/100714131236.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins