Featured Research

from universities, journals, and other organizations

Cerebral bioelectricity analysis detects epilepsy

Date:
July 20, 2010
Source:
Universidad Carlos III de Madrid - Oficina de Información Científica
Summary:
Researchers in Spain have developed a new method to analyze the information obtained from electroencephalograms to detect neurodegenerative diseases, such as epilepsy, using the bioelectric signals of the brain.

Brain topographic maps used in pre-processing.
Credit: Image courtesy of Universidad Carlos III de Madrid - Oficina de Información Científica

A group of researchers from Universidad Carlos III de Madrid (UC3M) has presented a new algorithm that uses a new method to analyse the information obtained from electroencephalograms to detect neurodegenerative diseases, such as epilepsy, using the bioelectric signals of the brain.

Related Articles


The research project is a joint effort among engineers and doctors from UC3M, the Clínica Universitaria de Navarra and Universidad Pública de Navarra. It began as a collaborative project designed to discover and interpret bioelectric phenomenon originating in the cerebral cortex. The objective of this research was to apply these studies to the analysis of different pathologies such as Parkinson's disease, Alzheimer or epilepsy. Electroencephalography was used as a means of obtaining cerebral signals. This technique uses electrodes placed on the surface of the scalp to perform a test that measures and records the electrical activity generated in the brain.

The first results recorded by the scientists were promising and showed a need to reduce the amount of information obtained from electroencephalograms due to the fact that the analysis of all the data requires a great deal of time and large processing capacity. In order to achieve this aim more efficiently, the scientists designed an algorithm that allows them to extract the most relevant characteristics of the signals associated with epilepsy. Thus, they are able to detect and classify more quickly epileptic seizures as well as determine which parts or areas of the brain are affected the most. "The advantage of this method is that it allows us to detect, classify or identify neurological diseases with a small amount of information" says Carlos Guerrero Mosquera, one of the researchers from the Department of Signal and Communications Theory (Departamento de Teoría de la Señal y Comunicaciones) at UC3M. He adds, "Electroencephalograms contain a lot of information and what we are looking for is to try to improve the efficiency of the tasks carried out by analysing small amounts of information through the use of the most important data received from the signals."

Presentation to the public

This new method, published recently in the journal Medical & Biological Engineering & Computing, has been compared to other techniques and the results of this analysis will be presented at the International Conference of the IEEE Engineering in Medicine and Biology Society. This event, which is one of the most important biomedical engineering conferences, will take place in Buenos Aires (Argentina) from the 31st August until 4th September. In general terms, this method can be divided into four fundamental processes: the acquisition of a signal through the use of electroencephalography, cleaning or pre-processing of the signal in order to eliminate noise and the extraction/selection of characteristics depending on how the information will be used. "The detection of data should follow a linear procedure but for the moment, we use databases," Carlos Guerrero points out. "At a later date, when the application shows positive results, we will try to reduce processing costs by the selection of specific characteristics."

The researchers explain that this method extracts information about the time and frequency pattern of the signal in a new and simple way. This makes it easier to detect and classify segments with epilepsy and opens up the possibility of applying the algorithm to other pathologies. "Initially this method was developed to classify and detect epileptic seizures, but in the future we wish to apply it to other neurodegenerative diseases such as Parkinson's, Alzheimer or the analysis of different sleep disorders," Guerrero explains.


Story Source:

The above story is based on materials provided by Universidad Carlos III de Madrid - Oficina de Información Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carlos Guerrero-Mosquera, Armando Malanda Trigueros, Jorge Iriarte Franco, Ángel Navia-Vázquez. New feature extraction approach for epileptic EEG signal detection using time-frequency distributions. Medical & Biological Engineering & Computing, 2010; 48 (4): 321 DOI: 10.1007/s11517-010-0590-5

Cite This Page:

Universidad Carlos III de Madrid - Oficina de Información Científica. "Cerebral bioelectricity analysis detects epilepsy." ScienceDaily. ScienceDaily, 20 July 2010. <www.sciencedaily.com/releases/2010/07/100719083052.htm>.
Universidad Carlos III de Madrid - Oficina de Información Científica. (2010, July 20). Cerebral bioelectricity analysis detects epilepsy. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2010/07/100719083052.htm
Universidad Carlos III de Madrid - Oficina de Información Científica. "Cerebral bioelectricity analysis detects epilepsy." ScienceDaily. www.sciencedaily.com/releases/2010/07/100719083052.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins