Featured Research

from universities, journals, and other organizations

'Runaway' development implicated in loss of function of the aging brain

Date:
July 22, 2010
Source:
Cold Spring Harbor Laboratory
Summary:
The brain undergoes rapid growth and development in the early years of life and then degenerates as we progress into old age, yet little is known about the biological processes that distinguish brain development and aging. In a new study, researchers have identified a gene regulatory link between changes in the young and aging brain, describing "runaway" development as a potentially significant factor in age-related loss of function.

The brain undergoes rapid growth and development in the early years of life and then degenerates as we progress into old age, yet little is known about the biological processes that distinguish brain development and aging. In a report published online in Genome Research, researchers have identified a gene regulatory link between changes in the young and aging brain, describing "runaway" development as a potentially significant factor in age-related loss of function.

The brain grows and changes dramatically during the early years of life, with some developmental processes extending well into adulthood. In later years, the brain undergoes destructive changes, such as a drop in brain volume, synapse loss, and cognitive decline. While brain development and aging are areas of intense research, they are traditionally studied separately, and little is known about the boundaries between the two processes.

Underlying brain development is the complex and coordinated process of gene regulation. "In development, many genes are turned on and off by regulators, such as transcription factors and microRNAs." said Mehmet Somel, postdoctoral researcher at the Shanghai Institutes for Biological Sciences. "The question is, do all of these regulatory processes cease once adulthood is reached, or are they still active in aging?"

Somel and an international team of researchers addressed this question by investigating messenger RNA (mRNA), microRNA, and protein expression changes in the prefrontal cortex of humans and rhesus macaque monkeys over the life span of each species. The prefrontal cortex is believed to be involved in functions such as complex behavior, personality, and decision-making.

The group found that distinct patterns of gene regulation in the prefrontal cortex do not stop at maturity, instead persisting into old age, a phenomenon that was observed for many different functional processes. One particularly striking example was the down-regulation of genes related to neuronal function.

Previous work has shown that neuronal genes gradually lose activity with age, attributed to an accumulation of damage in neuronal cells over a lifetime. Somel and colleagues have now shown that this process begins as early as three to four years of age, suggesting that these changes may be normal developmental regulation that continues long into old age. While this regulation is likely to be beneficial during development, at old age continuation of the gene regulation, or "runaway" development, might be detrimental.

Interestingly, they found the runaway neuronal development to be conserved in macaques, but it occurs an accelerated rate. Because the regulatory processes progress much faster, the authors suggest that this could be a significant contributor toward limiting the life span of macaques to only about one-third that of humans.

The authors caution that aging is a very complex process stemming from many contributing factors, but explain that their work suggests runaway development may be a significant contributor to age-related decline.

Why has evolution not eliminated such a potentially harmful process? Philipp Khaitovich of the Shanghai Institutes for Biological Sciences and senior author of the study explained that detrimental effects experienced during old age could spread throughout and fix within populations, especially when those effects are beneficial early in life.

"Evolutionarily, species are optimized to reproduce and ensure survival of the next generation, not to live as long as possible as individuals," said Khaitovich. "In fact, long lifespan precludes rapid genetic adaptations to changing environment."

Khaitovich added that as they now begin to understand the biological consequences of this evolutionary feature, researchers may find ways to shift the balance from early reproduction to individual longevity and enhanced health at old age.

Scientists from the Shanghai Institutes for Biological Sciences (Shanghai, China), the Max Planck Institute for Evolutionary Anthropology (Leipzig, Germany), La Trobe University (Melbourne, Australia), the Max Delbrück Center for Molecular Medicine (Berlin, Germany), and the Max Planck Institute for Molecular Genetics (Berlin, Germany) contributed to this study.

This work was supported by the Ministry of Science and Technology of the People's Republic of China, the Chinese Academy of Sciences, the Shanghai Institutes for Biological Sciences, the Max Planck-Society, and the Federal Ministry of Education and Research (Germany).


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Somel M, Guo S, Fu N, Yan Z, Yang Hu H, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Research, 2010; DOI: 10.1101/gr.106849.110

Cite This Page:

Cold Spring Harbor Laboratory. "'Runaway' development implicated in loss of function of the aging brain." ScienceDaily. ScienceDaily, 22 July 2010. <www.sciencedaily.com/releases/2010/07/100719174903.htm>.
Cold Spring Harbor Laboratory. (2010, July 22). 'Runaway' development implicated in loss of function of the aging brain. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2010/07/100719174903.htm
Cold Spring Harbor Laboratory. "'Runaway' development implicated in loss of function of the aging brain." ScienceDaily. www.sciencedaily.com/releases/2010/07/100719174903.htm (accessed August 21, 2014).

Share This




More Health & Medicine News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: World's Oldest Man Lives in Japan

Raw: World's Oldest Man Lives in Japan

AP (Aug. 20, 2014) — A 111-year-old Japanese was certified as the world's oldest man by Guinness World Records on Wednesday. Sakari Momoi, a native of Fukushima in northern Japan, was given a certificate at a hospital in Tokyo. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Freetown a City on Edge

Ebola-Hit Sierra Leone's Freetown a City on Edge

AFP (Aug. 19, 2014) — Residents of Sierra Leone's capital voice their fears as the Ebola virus sweeps through west Africa. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins