Featured Research

from universities, journals, and other organizations

Key compound of ozone destruction detected; Scientists disprove doubts in ozone hole chemistry

Date:
July 22, 2010
Source:
Karlsruhe Institute of Technology (KIT)
Summary:
For the first time, scientists in Germany have successfully measured in the ozone layer the chlorine compound ClOOCl, which plays an important role in stratospheric ozone depletion. Doubts in the established models of polar ozone chemistry expressed by American researchers based on laboratory measurements are disproved by these new atmospheric observations.

Atmospheric studies above Northern Scandinavia with a balloon-borne infrared spectrometer confirm existing polar ozone chemistry models.
Credit: MIPAS-B-Team, KIT

For the first time, Karlsruhe Institute of Technology (KIT) scientists have successfully measured in the ozone layer the chlorine compound ClOOCl, which plays an important role in stratospheric ozone depletion. The doubts in the established models of polar ozone chemistry expressed by American researchers based on laboratory measurements are disproved by these new atmospheric observations. The established role played by chlorine compounds in atmospheric ozone chemistry is in fact confirmed by KIT's atmospheric measurements.

The ozone hole above the Antarctic and the destructive role of chlorofluorocarbons (CFC) and their decomposition products have become a synonym of both global environmental problems and their solution by concerted agreements worldwide. Scientific fundamental research into ozone chemistry of the atmosphere was the basis of international agreements, such as the Montreal Protocol of 1987, which has put limits on CFC production. The success of the political implementation of these scientific findings is reflected by the fact that the chlorine content of the atmosphere and, hence, the ozone destruction potential recently started to decrease slowly.

For the first time, scientists from the Institute for Meteorology and Climate Research (IMK) have detected using atmospheric infrared measurements the important, but rather unstable chlorine monoxide dimer (ClOOCl) that plays a central role in stratospheric ozone destruction at the end of the Arctic winter. During the polar winter after sunrise, ClOOCl rapidly forms atomic chlorine which may catalytically decompose ozone. The extent of ClOOCl decay caused by the short-wave sunlight determines the extent of stratospheric polar ozone decomposition.

However, understanding of the processes involved in ozone-destroying atmospheric chlorine chemistry was questioned by laboratory measurements of American scientists (F. Pope et al., J. Phys. Chem. A, 111, 4322-4332, 2007). According to them, the decay of ClOOCl caused by sunlight is smaller than the decay calculated by other working groups. This would also imply weaker ozone decomposition. However, stratospheric chemistry models were found to significantly underestimate the ozone decomposition using these laboratory measurements. Hence, understanding of the ozone destruction processes in general was questioned.

"The atmosphere measurements made by KIT scientists above Northern Scandinavia with the balloon-borne infrared spectrometer MIPAS-B at heights of more than 20 kilometers clearly disprove the doubts of the American scientists and confirm the existing models of polar ozone chemistry," underlines Dr. Gerald Wetzel, member of the IMK staff. "Measurement and evaluation of balloon spectra require a very close cooperation of engineers and scientists, without which these important results would not have been possible."


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology (KIT). Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Wetzel, H. Oelhaf, O. Kirner, R. Ruhnke, F. Friedl-Vallon, A. Kleinert, G. Maucher, H. Fischer, M. Birk, G. Wagner, A. Engel. First remote sensing measurements of ClOOCl along with ClO and ClONO2 in activated and deactivated Arctic vortex conditions using new ClOOCl IR absorption cross sections. Atmospheric Chemistry and Physics, 2010; 10 (3): 931 DOI: 10.5194/acp-10-931-2010

Cite This Page:

Karlsruhe Institute of Technology (KIT). "Key compound of ozone destruction detected; Scientists disprove doubts in ozone hole chemistry." ScienceDaily. ScienceDaily, 22 July 2010. <www.sciencedaily.com/releases/2010/07/100722092227.htm>.
Karlsruhe Institute of Technology (KIT). (2010, July 22). Key compound of ozone destruction detected; Scientists disprove doubts in ozone hole chemistry. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2010/07/100722092227.htm
Karlsruhe Institute of Technology (KIT). "Key compound of ozone destruction detected; Scientists disprove doubts in ozone hole chemistry." ScienceDaily. www.sciencedaily.com/releases/2010/07/100722092227.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins