Featured Research

from universities, journals, and other organizations

Thought-controlled prosthetic limb system to be tested on human subjects

Date:
August 4, 2010
Source:
Johns Hopkins University Applied Physics Laboratory
Summary:
Researchers will soon be testing the Modular Prosthetic Limb (MPL) system on human subjects, using a brain-controlled interface. Scientists and engineers developed the underlying technology under an ambitious four-year U.S. government-funded effort to create a prosthetic arm that would by far eclipse the World War II era hook-and-cable device used by most amputees. The program has already produced two complex prototypes, each advancing the art of upper-arm prosthetics.

This final prototype of the Modular Prosthetic Limb, successfully demonstrated to the Defense Advanced Research Projects Agency in December 2009, offers 22 degrees of motion, including independent movement of each finger, in a package that weighs about nine pounds (the weight of a natural limb).
Credit: DARPA/JHUAPL/HDT Engineering Services

The U.S. Defense Advanced Research Projects Agency (DARPA) has awarded a contract for up to $34.5 million to The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., to manage the development and testing of the Modular Prosthetic Limb (MPL) system on human subjects, using a brain-controlled interface.

APL scientists and engineers developed the underlying technology under DARPA's Revolutionizing Prosthetics 2009 program, an ambitious four-year effort to create a prosthetic arm that would by far eclipse the World War II era hook-and-cable device used by most amputees. The program has already produced two complex prototypes, each advancing the art of upper-arm prosthetics.

The final design -- the MPL -- offers 22 degrees of motion, including independent movement of each finger, in a package that weighs about nine pounds (the weight of a natural limb). Providing nearly as much dexterity as a natural limb, the MPL is capable of unprecedented mechanical agility and is designed to respond to a user's thoughts.

"We've developed the enabling technologies to create upper-extremity prosthetics that are more natural in appearance and use, a truly revolutionary advancement in prosthetics," said APL's Michael McLoughlin, the program manager. "Now, in Phase 3, we are ready to test it with humans to demonstrate that the system can be operated with a patient's thoughts and that it can provide that patient with sensory feedback, restoring the sensation of touch."

The team will develop implantable micro-arrays used to record brain signals and stimulate the brain. They will also conduct experiments and clinical trials to demonstrate the ability to use implantable neural interfaces safely and effectively to control a prosthesis, and optimize arm control and sensory feedback algorithms that enable dexterous manipulation through the use of a neuro-prosthetic limb.

"We will be working very closely with the University of Pittsburgh and the California Institute of Technology for their experience in brain computer interfaces, the University of Chicago for their expertise in sensory perception, the University of Utah for its capabilities in developing implantable devices suitable for interfacing with the human brain, and HDT Engineered Technologies for their skill in building prosthetic limb systems," McLoughlin said.

Both Pittsburgh and CalTech have conducted research using chips with hair-like electrodes to record neurological signatures in the brain. Last year, in an independent effort, Pittsburgh showed that a pair of macaque monkeys with tiny chips implanted in their brains could operate a robotic arm just by thinking about it. Wires carried the signals through the skull, and then computer software converted these signals into robotic arm movements.

Within the year, the APL-led team will initiate testing with a high spinal cord injury patient. "Initially, we have targeted the quadriplegic patient population because they have the most to gain," McLoughlin explained. "Unlike most amputee patients who have other options in terms of care and independence, these patients are totally dependent on others for most things. There is no alternative. Their lives will be truly transformed by this advancement."

Over the next two years, the team hopes to test the systems and neural interface technology in five patients.

Whereas Pittsburgh and CalTech are exploring innovative ways to record information from the brain, the University of Chicago's research will focus on closing the loop by stimulating the brain to sense pressure and touch. "The goal is to enable the user to more effectively control movements to perform everyday tasks, such as picking up and holding a cup of coffee," McLoughlin said.

The University of Utah, along with the Salt Lake City-based Blackrock Microsystems, is researching and developing advanced electrode technology for brain signal recording and stimulation. Innovative electrode designs are the enabling technology that will provide the means to control the prosthetic arm through the patient's thoughts.

Finally, the Solon, Ohio-based HDT Engineered Technologies, which designed and manufactured major components of the current MPL, will enhance its capabilities and provide the limb system hardware required for this effort.

McLoughlin commented, "The results of this program will help upper-limb amputees and spinal cord injury patients, as well as others who have lost the ability to use their natural limbs, to have as normal a life as possible despite severe injuries or degenerative neurological disease."


Story Source:

The above story is based on materials provided by Johns Hopkins University Applied Physics Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University Applied Physics Laboratory. "Thought-controlled prosthetic limb system to be tested on human subjects." ScienceDaily. ScienceDaily, 4 August 2010. <www.sciencedaily.com/releases/2010/08/100804081227.htm>.
Johns Hopkins University Applied Physics Laboratory. (2010, August 4). Thought-controlled prosthetic limb system to be tested on human subjects. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/08/100804081227.htm
Johns Hopkins University Applied Physics Laboratory. "Thought-controlled prosthetic limb system to be tested on human subjects." ScienceDaily. www.sciencedaily.com/releases/2010/08/100804081227.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins