Featured Research

from universities, journals, and other organizations

Implantable silk metamaterials could advance biomedicine, biosensing

Date:
August 13, 2010
Source:
Tufts University
Summary:
Researchers have fabricated and characterized the first large-area metamaterial structures patterned on implantable, bio-compatible silk substrates. The antenna-like devices can monitor the "fingerprints" of chemical and biological agents and might be implanted to signal changes in the body. Metamaterials are artificial electromagnetic composites whose structures respond to electromagnetic waves in ways that atoms in natural materials do not.

The tiny, flexible devices can be rolled into capsule-like shapes.
Credit: Hu Tao, Tufts University

Researchers at the Tufts University School of Engineering and Boston University have fabricated and characterized the first large area metamaterial structures patterned on implantable, bio-compatible silk substrates.

Related Articles


The research, reported online July 21, 2010, in the journal Advanced Materials, provides a promising path towards the development of a new class of metamaterial-inspired implantable biosensors and biodetectors.

Metamaterials are artificial electromagnetic composites, typically made of highly conducting metals, whose structures respond to electromagnetic waves in ways that atoms in natural materials do not. The most futuristic metamaterials would absorb all light, to create heat to destroy cancerous tissue, or bend light completely around an object, rendering that object invisible -- an imaginary delight for fans of science fiction or spy novels.

"However, the real power of metamaterials is the possibility of constructing materials with a user-designed electromagnetic response at a precisely controlled target frequency. This opens the door to novel electromagnetic behaviors such as negative refractive index, perfect lensing, perfect absorbers and invisibility cloaks," explains Tufts Professor of Biomedical Engineering Fiorenzo Omenetto, who led the research team. Omenetto also holds an appointment in the Department of Physics at Tufts School of Arts and Sciences.

The team focused on metamaterial silk composites that are resonant at the terahertz frequency. This is the frequency where many chemical and biological agents show unique "fingerprints," which could potentially be used for biosensing.

Small Antennas Act as One

The researchers sprayed gold-based metamaterial structures directly on pre-made silk films with micro-fabricated stencils using a shadow mask evaporation technique. Spraying the metamaterial onto the flexible silk films created a composite so pliable that it could be wrapped into small, capsule-like cylinders.

Silk films are highly transparent at THz frequencies, so metamaterial silk composites display a strong resonant electromagnetic response. Each fabricated sample was 1 square centimeter and contained 10,000 metamaterial resonators with unique resonant response at the desired frequencies.

According to Fiorenzo Omenetto, the research team likens the concept to "a very peculiar kind of antenna--actually, a lot of small antennas that behave as one. The silk metamaterial composite is sensitive to the dieletric properties of the silk substrate and can monitor the interaction between the silk and the local environment. For example, the metamaterial might signal changes in a bioreactive silk substrate that has been doped with proteins or enzymes."

The addition of a pure biological substrate such as silk to the gold metamaterial adds immense latitude and opportunity for unforeseen applications, says Professor Richard Averitt, one of Omenetto's collaborators from Boston University and an expert on metamaterials.

The resonance response could be used as an implantable electromagnetic signature for contrast agents or bio-tracking applications, says co-author Hu Tao, a former Boston University graduate student who is now a postdoctoral associate in Omenetto's lab.

In Situ Bio-Sensing

To demonstrate the concept, the researchers conducted a series of in vitro experiments that examined the electromagnetic response of the silk metamaterials when implanted under thin slices of muscle tissue. They found that the metamaterials retained their novel resonance properties while implanted. The same process could be readily adapted to fabricate silk metamaterials at other frequencies, according to Tao.

"Our approach offers great promise for applications such as in situ bio-sensing with implanted medical devices and the transmission of medical information from within the human body," says Omenetto. "Imagine the benefits of monitoring the rate of drug delivery from a drug-eluting cardiac stent, making a perfect absorber that can be implanted to attack diseased tissue by heat, or wrapping an 'invisibility cloak' around an organ to examine the tissue behind it."

The research was funded in part by the Air Force Office of Scientific Research, the Department of Defense/U.S. Army Research Laboratory and the Defense Advanced Research Projects Agency. It is based upon work supported in part by the Army Research Laboratory, the U.S. Army Research Office and DARPA-DSO.


Story Source:

The above story is based on materials provided by Tufts University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tao et al. Metamaterial Silk Composites at Terahertz Frequencies. Advanced Materials, 2010; DOI: 10.1002/adma.201000412

Cite This Page:

Tufts University. "Implantable silk metamaterials could advance biomedicine, biosensing." ScienceDaily. ScienceDaily, 13 August 2010. <www.sciencedaily.com/releases/2010/08/100812135938.htm>.
Tufts University. (2010, August 13). Implantable silk metamaterials could advance biomedicine, biosensing. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2010/08/100812135938.htm
Tufts University. "Implantable silk metamaterials could advance biomedicine, biosensing." ScienceDaily. www.sciencedaily.com/releases/2010/08/100812135938.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Inspectors Found Faulty Work Before NYC Blast

Inspectors Found Faulty Work Before NYC Blast

AP (Mar. 27, 2015) An hour before an apparent gas explosion sent flames soaring and debris flying at a Manhattan apartment building, injuring 19 people, utility company inspectors decided the work being done there was faulty. (March 27) Video provided by AP
Powered by NewsLook.com
Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Residents Witness Building Explosion, Collapse

Residents Witness Building Explosion, Collapse

AP (Mar. 26, 2015) Witnesses recount the sites and sounds of a massive explosion and subsequent building collapse in the heart of Manhattan&apos;s trendy East Village on Thursday. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins