Featured Research

from universities, journals, and other organizations

New sporadic prion protein disease: Variably protease-sensitive prionopathy shares genotype characteristics with Creutzfeldt-Jakob

Date:
August 13, 2010
Source:
Case Western Reserve University
Summary:
A new sporadic prion protein disease has been discovered. Variably protease-sensitive prionopathy, as it has been named, is the second type of complete sporadic disease to be identified since Creutzfeldt-Jakob disease was reported in the 1920s.

A new sporadic prion protein disease has been discovered. Variably protease-sensitive prionopathy (VPSPr), as it has been named, is the second type of complete sporadic disease to be identified since Creutzfeldt-Jakob disease (CJD) was reported in the 1920s.

The landmark finding from the National Prion Disease Pathology Surveillance Center at Case Western Reserve University is published in the August issue of Annals of Neurology.

Normally, the human prion protein gene comes in three types due to its capability to encode prion proteins that contain only the amino acid methionine, commonly identified as M, both methionine and valine, commonly identified as V, or only for the amino acid valine at position 129. Therefore, when it comes to the prion protein gene unaffected people can be identified as 129MM, 129MV or 129VV. Sporadic CJD (sCJD), which is the most common human prion disease, can affect patients who have any one of the three types of the prion protein gene.

In 2008, Pierluigi Gambetti, MD, and Wen-Quan Zou, MD, PhD, with collaborators, reported the discovery of this novel disease, which affected patients who exhibit only one of the three types of the prion protein gene. In this follow-up study, they discovered that all three genetic groups can be affected also by this novel disease which now joins sCJD in displaying this feature. However, VPSPr is associated with an abnormal prion protein that exhibits characteristics very different from those of sCJD, as well as other prion diseases, suggesting that it may be caused by a different mechanism, perhaps more akin to other neurodegenerative diseases, such as Alzheimer's disease. This finding may exemplify, for the first time, the possibility that the prion protein affects the brain with different mechanisms.

While examining cases received at the National Prion Disease Pathology Surveillance Center where he is the director, Dr. Gambetti observed that a subset of cases had clinical and pathological features quite different from those of all known types of human prion diseases. Further, after being tested for prion proteins via the Western blot -- the gold standard of prion disease diagnosis -- the cases were negative. Dr. Gambetti then collaborated with Dr. Zou, associate director at the center, to solve the riddle of a disease that exhibited some features of a prion disease in histopathological examination but was negative using the standard Western blot test.

Dr. Zou's lab performed a full characterization of the disease and discovered that the VPSPr-associated abnormal prion protein formed a ladder-like electrophoretic profile on Western blot. "When I obtained the first Western blot result of these cases with a different antibody against prions, I was surprised that these cases consistently exhibited this particular profile; one that I had never seen in my more than 10 years of work on human prion diseases," Dr. Zou, assistant professor of pathology at Case Western Reserve School of Medicine, recalls. This ladder-like profile is quite distinctive and very different from the profile of common prion diseases. "Discovery of this unique type of prion provides solid evidence that this novel disease may possess a pathogenesis that is different from that of the major prion diseases currently known," Dr. Zou adds.

Despite extensive research, a relatively large group of neurodegenerative diseases associated with dementia remain undefined. Before being discovered and characterized, VPSPr was one of the undefined dementing diseases. The discovery of VPSPr is chipping away at that group. In the two years since its discovery, more than 30 cases have been reported.

"If, as the current evidence indicates, the VPSPr mechanism of affecting the brain is different from that of other sporadic prion diseases, such as sCJD, the discovery of VPSPr would also provide the first example that the prion protein may spontaneously damage the brain with different mechanisms," concludes Dr. Gambetti, professor of pathology at Case Western Reserve School of Medicine. "This might apply to other dementing illnesses as well, and has implications for the strategies that need to be followed to attain a cure."

Drs. Gambetti and Zou, along with their extensive research team, plan to further characterize the abnormal prion protein associated with VPSPr as well as other important features of the protein, such as the disease's propensity for transmission upon inoculation and its replication in test tubes. These features in VPSPr will be compared with those of sCJD to obtain a complete picture of how the abnormal prion protein attacks the brain in these two diseases.

This research was supported by funding from the National Institutes of Health, Centers for Disease Control and Prevention, Britton Fund, CJD Foundation, Alliance BioSecure, and University Center on Aging and Health with the support of the McGregor Foundation, and President's Discretionary Fund (Case Western Reserve University).


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wen-Quan Zou, Gianfranco Puoti, Xiangzhu Xiao, Jue Yuan, Liuting Qing, Ignazio Cali, Miyuki Shimoji, Jan P.M. Langeveld, Rudy Castellani, Silvio Notari, Barbara Crain, Robert E. Schmidt, Michael Geschwind, Stephen J. DeArmond, Nigel J. Cairns, Dennis Dickson, Lawrence Honig, Juan Maria Torres, James Mastrianni, Sabina Capellari, Giorgio Giaccone, Ermias D. Belay, Lawrence B. Schonberger, Mark Cohen, George Perry, Qingzhong Kong, Piero Parchi, Fabrizio Tagliavini and Pierluigi Gambetti. Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein. Annals of Neurology, 2010; 68 (2): 162%u2013172 DOI: 10.1002/ana.22094

Cite This Page:

Case Western Reserve University. "New sporadic prion protein disease: Variably protease-sensitive prionopathy shares genotype characteristics with Creutzfeldt-Jakob." ScienceDaily. ScienceDaily, 13 August 2010. <www.sciencedaily.com/releases/2010/08/100813110225.htm>.
Case Western Reserve University. (2010, August 13). New sporadic prion protein disease: Variably protease-sensitive prionopathy shares genotype characteristics with Creutzfeldt-Jakob. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2010/08/100813110225.htm
Case Western Reserve University. "New sporadic prion protein disease: Variably protease-sensitive prionopathy shares genotype characteristics with Creutzfeldt-Jakob." ScienceDaily. www.sciencedaily.com/releases/2010/08/100813110225.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com
Mental, Neurological Disabilities Up 21% Among Kids

Mental, Neurological Disabilities Up 21% Among Kids

Newsy (Aug. 18, 2014) New numbers show a decade's worth of changes in the number of kids with disabilities. They suggest mental disabilities are up; physical ones are down. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins