Featured Research

from universities, journals, and other organizations

Potential HIV drug keeps virus out of cells

Date:
August 24, 2010
Source:
University of Utah Health Sciences
Summary:
Following up a pioneering 2007 proof-of-concept study, biochemists have developed a promising new anti-HIV drug candidate, PIE12-trimer, that prevents HIV from attacking human cells.

D-peptide inhibitors (PIE12, yellow) binding to the HIV "pocket" region (orange). PIE12 binds to the pocket, preventing interaction of other HIV components required to mediate HIV's entry into target cells.
Credit: Michael S. Kay, M.D., Ph.D., University of Utah School of Medicine

Following up a pioneering 2007 proof-of-concept study, a University of Utah biochemist and colleagues have developed a promising new anti-HIV drug candidate, PIE12-trimer, that prevents HIV from attacking human cells.

Michael S. Kay, M.D., Ph.D., associate professor of biochemistry in the University of Utah School of Medicine and senior author of the study published on Aug. 18, 2010, online by the Journal of Virology, is raising funds to begin animal safety studies, followed by human clinical trials in two to three years. Kay believes PIE12-trimer is ideally suited for use as a vaginal microbicide (topically applied drug) to prevent HIV infection. His research group is particularly focused on preventing the spread of HIV in Africa, which has an estimated two-thirds of the world's 33 million HIV patients according to the World Health Organization.

"We believe that PIE12-trimer could provide a major new weapon in the arsenal against HIV/AIDS. Because of its ability to block the virus from infecting new cells, PIE12-trimer has the potential to work as a microbicide to prevent people from contracting HIV and as a treatment for HIV infected people. HIV can develop resistance rapidly to existing drugs, so there is a constant need to develop new drugs in hopes of staying ahead of the virus." Kay said.

PIE12-trimer was designed with a unique "resistance capacitor" that provides it with a strong defense against the emergence of drug-resistant viruses.

Peptide drugs have great therapeutic potential, but are often hampered by their rapid degradation in the body. D-peptides are mirror-image versions of natural peptides that cannot be broken down, potentially leading to higher potency and longevity in the body. Despite these potential advantages, no D-peptides have yet been developed.

PIE12-trimer consists of three D-peptides (PIE12) linked together that block a "pocket" on the surface of HIV critical for HIV's gaining entry into the cell. "Clinical trials will determine if PIE12-trimer is as effective in humans as it is in the lab," Kay said.

Across the world, HIV occurs in many different strains and has the ability to mutate to resist drugs aimed at stopping it. Due to the high conservation of the pocket region across strains, PIE12-trimer worked against all major HIV strains worldwide, from Southeast Asia and South America to the United States and Africa.

To help advance toward human clinical trials, Kay and co-authors Brett D. Welch, Ph.D., and Debra M. Eckert, Ph.D., research assistant professor of biochemistry, formed a company, Kayak Biosciences, which is owned by the University of Utah Research Foundation. If PIE12-trimer proves to be an effective and safe drug against HIV, the same D-Peptide drug design principles can be applied against other viruses, according to Kay. Approval of the first D-peptide drug would also greatly stimulate development of other D-peptide drugs.

The study's first authors are Welch, and U of U graduate student J. Nicholas Francis. Also contributing were U graduate students Joseph Redman and Matthew Weinstock, as well as Eckert. Images of how PIE12 binds to the HIV pocket were obtained using X-ray crystallography, a technology that provides high-resolution analysis of atomic structures, and were provided by Frank Whitby, Ph.D., research assistant professor of biochemistry, and Christopher P. Hill, Ph.D., professor and co-chair of the Department of Biochemistry. The study includes colleagues from Thomas Jefferson University in Philadelphia and Monogram Biosciences, South San Francisco, Calif.

This research was funded by the National Institutes of Health and the University of Utah Research Foundation.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. D. Welch, J. N. Francis, J. S. Redman, S. Paul, M. T. Weinstock, J. D. Reeves, Y. S. Lie, F. G. Whitby, D. M. Eckert, C. P. Hill, M. J. Root, M. S. Kay. Design of a Potent D-peptide HIV-1 Entry Inhibitor with a Strong Barrier to Resistance. Journal of Virology, 2010; DOI: 10.1128/JVI.01339-10

Cite This Page:

University of Utah Health Sciences. "Potential HIV drug keeps virus out of cells." ScienceDaily. ScienceDaily, 24 August 2010. <www.sciencedaily.com/releases/2010/08/100818141553.htm>.
University of Utah Health Sciences. (2010, August 24). Potential HIV drug keeps virus out of cells. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/08/100818141553.htm
University of Utah Health Sciences. "Potential HIV drug keeps virus out of cells." ScienceDaily. www.sciencedaily.com/releases/2010/08/100818141553.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins