Featured Research

from universities, journals, and other organizations

'Spintronics' breakthrough holds promise for next-generation computers

Date:
August 24, 2010
Source:
University of Kansas
Summary:
Using powerful lasers, physicists have discovered a new way to recognize currents of spinning electrons within a semiconductor. Their findings could lead the way to development of superior computers and electronics.

Hui Zhao, assistant professor of physics and astronomy.
Credit: Image courtesy of University of Kansas

Using powerful lasers, Hui Zhao, assistant professor of physics and astronomy at the University of Kansas, and graduate student Lalani Werake have discovered a new way to recognize currents of spinning electrons within a semiconductor.

Their findings could lead the way to development of superior computers and electronics. Results from their work in KU's Ultrafast Laser Lab will be published in the September issue of the journal Nature Physics and was posted online in early August.

Zhao and Werake research spin-based electronics, dubbed "spintronics."

"The goal is to replace everything -- from computers to memory devices -- to have higher performance and less energy consumption," said Zhao.

The KU investigator said that future advancements to microchips would require a different approach for transmitting the sequences of ones and zeros that make up digital information.

"We have been using the charge of the electron for several decades," said Zhao. "But right now the size of each device is just 30 to 50 nanometers, and you don't have many atoms remaining on that tiny scale. We can't continue that way anymore because we're hitting a fundamental limit."

Instead of using the presence or absence of electronic charges, spintronics relies on the direction of an electron's rotation to convey data.

"Roughly speaking, an electron can be viewed as a tiny ball that spins like a baseball," said Zhao. "The difference is that a baseball can spin at any speed, but an electron can only spin at a certain speed -- either counterclockwise or clockwise. Therefore, we can use one spin state to represent 'zero' and another to represent 'one.' Because a single electron can carry this information, this takes much less time and much less energy."

However, one major hurdle for spintronics researchers has been the difficulty in detecting the flow of spinning electrons in real time.

"We haven't been able to monitor the velocity of those spinning electrons, but velocity is associated with the spin current," Zhao said. "So there's been no way to directly detect the spin current so far."

The discovery by Zhao and Werake changes that.

The KU researchers have discovered that shining a laser beam on a piece of semiconductor generates different color lights if the spinning electrons are flowing, and the brightness of the new light is related to the strength of the spin current.

The optical effect, known as "second-harmonic generation," can monitor spin-current in real time without altering the current itself. Zhao compares his new method with a police officer's radar gun, which tracks a car's speed as it passes.

This vastly improves upon spin-current analysis now in use, which the KU researcher says is akin to analyzing still photographs to determine a car's speed, long after the car has sped away.

"Spintronics is still in the research phase, and we hope that this new technology can be used in labs to look at problems that interest researchers," said Zhao. "As spintronics become industrialized, we expect this could become a routine technique to check the quality of devices, for example."

A five-year CAREER award from the National Science Foundation funded the work by Zhao and Werake.


Story Source:

The above story is based on materials provided by University of Kansas. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lalani K. Werake, Hui Zhao. Observation of second-harmonic generation induced by pure spin currents. Nature Physics, 2010; DOI: 10.1038/nphys1742

Cite This Page:

University of Kansas. "'Spintronics' breakthrough holds promise for next-generation computers." ScienceDaily. ScienceDaily, 24 August 2010. <www.sciencedaily.com/releases/2010/08/100824121026.htm>.
University of Kansas. (2010, August 24). 'Spintronics' breakthrough holds promise for next-generation computers. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/08/100824121026.htm
University of Kansas. "'Spintronics' breakthrough holds promise for next-generation computers." ScienceDaily. www.sciencedaily.com/releases/2010/08/100824121026.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins