Featured Research

from universities, journals, and other organizations

Induced pluripotent stem cell retain an inactivated X chromosome, study finds

Date:
September 6, 2010
Source:
University of California - Los Angeles
Summary:
Female induced pluripotent stem cells, reprogrammed from human skin cells into cells that have the embryonic-like potential to become any cell in the body, retain an inactive X chromosome, stem cell researchers have found.

Female induced pluripotent stem (iPS) cells, reprogrammed from human skin cells into cells that have the embryonic-like potential to become any cell in the body, retain an inactive X chromosome, stem cell researchers at UCLA have found.

The finding, reported in the journal Cell Stem Cell, could have implications for studying X chromosome-linked diseases such as Rett syndrome, caused by mutations in a gene located on the X chromosome.

The findings differ from those seen in mouse skin cells that are reprogrammed into iPS cells, in which the inactive X chromosome reactivates, said Kathrin Plath, senior author of the study and a scientist with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

"We knew from our studies that in reprogrammed mouse cells, the X chromosome becomes active again," said Plath, an assistant professor of biological chemistry and one of the first scientists in the world to reprogram mouse and human adult cells into iPS cells. "The question we wanted to ask is what happens in female human iPS cells."

All female cells have two X chromosomes -- one from each parent -- and in early development, one X chromosome is permanently inactivated. The inactivation of the X chromosome ensures that females, like males, have one functional copy of the X chromosome in each cell of the body and that the cells develop normally Plath and her team took human skin cells from females of varying ages. The cells have one active and one inactive X chromosome. The research team added four transcription factors to reprogram the cells into iPS cells and examined the resulting iPS cells to uncover the status of the X chromosome. They found that one X chromosome remained inactive, making the reprogrammed cells similar to most female human embryonic stem cells, which have one active and one inactive X chromosome. More than 30 different iPS cells lines were analyzed in the study, with the same result, Plath said.

"The presence of the inactive X chromosome in the iPS cells raised the question of which of the two X chromosomes is inactive in the iPS cell lines," Plath said.

During mouse and human embryonic development, one X chromosome is silenced in every female somatic cell, but the selection of either the paternal or maternal chromosome for silencing is random in each cell. A typical population of skin cells is mosaic for which X chromosome is silenced, containing about 50% of cells that inactivated the paternally inherited X, while the other 50% of cells inactivated the maternal X. Plath and her team sought to determine whether X chromosome silencing in iPS cell populations was random as well.

Plath found that all cells in the same reprogrammed iPS cell line exclusively expressed the same X chromosome and had the other X inactive. Also, Plath found that different iPS cells lines that came from the same adult skin cell population can differ in which X chromosome is inactivated.

Because the inactivated X is retained during human cell reprogramming and differentiation of iPS cells, these cells are well positioned for the study of X-linked diseases because it would be possible to get lines either expressing the normal or mutant allele from the same female patient.

"This non-random pattern of X chromosome inactivation found in iPS cell lines has critical implications for clinical applications and disease modeling and could be exploited for a unique form of gene therapy for X-linked diseases," Plath said.

In collaboration with other stem cell researchers at UCLA, including Bill Lowry and April Pyle, they generated isogenic, or identical genetically, female iPS cell lines from females who are carriers of the mutation in the dystrophin gene on the X chromosome, making themcarriers for muscular dystrophy (DMD). They isolated iPS cell lines that either exclusively expressed the normal or the mutant version of the affected dystrophin gene responsible for DMD. These cells are isogenic and represent the perfect pair of control and mutant cell types for investigation of the disease phenotype. They currently are studying the effect of the mutation in muscle differentiation.

This observation could also be useful in potential cell therapy for X-linked disorders such as Rett Syndrome as the differentiated cells derived from iPS cells expressing the normal protein could possibly be transplanted back in place of those expressing the mutant protein.

"For studies of X-linked diseases with female iPS cells, one needs to be careful about which X chromosome is expressed," Plath said.

The study was funded by the California Institute for Regenerative Medicine, the National Institutes of Health and the UCLA Broad Stem Cell Research Center.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason Tchieu, Edward Kuoy, Mark H. Chin, Hung Trinh, Michaela Patterson, Sean P. Sherman, Otaren Aimiuwu, Anne Lindgren, Shahrad Hakimian, Jerome A. Zack, Amander T. Clark, April D. Pyle, William E. Lowry, Kathrin Plath. Female Human iPSCs Retain an Inactive X Chromosome. Cell Stem Cell, 2010; DOI: 10.1016/j.stem.2010.06.024

Cite This Page:

University of California - Los Angeles. "Induced pluripotent stem cell retain an inactivated X chromosome, study finds." ScienceDaily. ScienceDaily, 6 September 2010. <www.sciencedaily.com/releases/2010/09/100903092501.htm>.
University of California - Los Angeles. (2010, September 6). Induced pluripotent stem cell retain an inactivated X chromosome, study finds. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2010/09/100903092501.htm
University of California - Los Angeles. "Induced pluripotent stem cell retain an inactivated X chromosome, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/09/100903092501.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins