Featured Research

from universities, journals, and other organizations

Quantum simulator and supercomputer at the crossroads

Date:
November 3, 2010
Source:
Max Planck Institute of Quantum Optics
Summary:
Scientists in an international collaboration have measured for the first time a many-body phase diagram with ultracold atoms in optical lattices at finite temperatures.

Matter-wave interference patterns across the BEC transition in the lattice: The image shows interference patterns of ultracold atoms released from an optical lattice at temperatures ranging from 10nK to 50nK (increasing from left to right). The experimental results (front row) perfectly match numerical quantum Monte Carlo simulations (back row) performed without free parameters. As the sample becomes colder sharp interference peaks appear (center), indicating the transition from a normal gas to a so-called superfluid.
Credit: MPQ

MPQ-LMU scientists in an international collaboration measure for the first time a many-body phase diagram with ultracold atoms in optical lattices at finite temperatures.

Transitions between different phases of matter are a phenomenon occurring in everyday life. For example water -- depending on its temperature -- can take the form of a solid, a liquid or a gas. The circumstances that lead to the phase-transition of a substance are of fundamental interest in understanding emergent quantum phenomena of a many-particle system. In this respect, the ability to study phase transition between novel states of matter with ultracold atoms in optical lattices has raised the hope to answer open questions in condensed matter physics. MPQ-LMU scientists around Prof. Immanuel Bloch in collaboration with physicists in Switzerland, France, the United States and Russia have now for the first time determined the phase-diagram of an interacting many-particle system at finite temperatures.

Employing state-of-the art numerical quantum "Monte Carlo" methods implemented on a supercomputer, it was possible to validate the measurements and the strategies used to extract the relevant information from them. This exemplary benchmarking provides an important milestone on the way towards quantum simulations with ultracold atoms in optical lattices beyond the reach of numerical methods and present day super computers.

In the experiments, a sample of up to 300.000 "bosonic" rubidium atoms was cooled down to a temperature close to absolute zero -- approximately minus 273°C. At such low temperatures, all atoms in the ultracold gas tend to behave exactly the same, forming a new state of matter known as Bose-Einstein condensate (BEC). Once this state is reached, the researchers "shake" the atoms to intentionally heat them up again, thereby controlling the temperature of the gas to better than one hundredth of a millionth of a degree. The so-prepared ultracold -- yet not as cold -- gas is then loaded into a three-dimensional optical lattice. Such a lattice is created by three mutually orthogonal standing waves of laser light, forming "a crystal of light" in which the atoms are trapped. Much like electrons in a real solid body, they can move within the lattice and interact with each other repulsively. It is this analogy that has sparked a vast interest in this field, since it allows for the study of complex condensed matter phenomena in a tunable system without defects.

When being loaded into the optical lattice, the atoms can arrange in three different phases depending on their temperature, their mobility and the strength of the repulsion between them. If the strength of the repulsion between the atoms is much larger than their mobility, a so-called Mott-insulator will form at zero temperature in which the atoms are pinned to their lattice sites. If the mobility increases, a quantum phase transition is crossed towards a superfluid phase in which the wave functions of the atoms are delocalized over the whole lattice. The superfluid phase exists up to a transition temperature above which a normal gas is formed. This temperature tends to absolute zero as the phase transition between the superfluid and the Mott-insulator is approached -- a feature which is typical in the vicinity of a quantum phase transition.

In order to determine the phase of the atoms in the experiments, they are instantaneously released from the optical lattice. Now, according to the laws of quantum mechanics, a matter wave expands from each of the lattice sites, much like electromagnetic waves expanding from an array of light sources. And as in the latter case, an interference pattern emerges that reflects the coherence properties of the array of sources. It is this information of the coherence properties that the scientists are looking at in order to read out the many-body phase of the atoms in the artificial crystal: The normal gas in the lattice shows little coherence and almost no interference pattern would be visible after releasing the atoms. The superfluid, however, does exhibit long-range phase coherence which results in sharp interference peaks. By determining the temperature of the onset of these defined structures for various ratios of interaction strength and mobility, the researchers could map out the complete phase boundary between the superfluid and the normal gas.

Given the large number of particles and the size of the artificial crystal, it is extremely demanding to simulate the physics of the present systems on a classical computer. Only recently, suitable quantum Monte Carlo methods have been developed, that allow for the direct simulation of the experiments on up to ten billion lattice sites without significant simplification of the problem. They have been implemented at the ETH in Zurich on the "Brutus" computer cluster. With the simulation results, it was for the first time possible to directly determine the temperature of the lattice gas, to quantify heating rates in the optical lattice and to validate the strategies employed to determine the phase diagram. The numerical calculations, however, could last several days, up to weeks, where the experiments could be performed within one or two hours. This difference in the timescales shows the value of the experimental setup as a "quantum simulator" of numerous, more complex problems beyond the reach of state-of-the-art numerical methods.


Story Source:

The above story is based on materials provided by Max Planck Institute of Quantum Optics. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N. V. Prokof?ev, B. Svistunov, M. Troyer. Suppression of the critical temperature for superfluidity near the Mott transition. Nature Physics, 2010; DOI: 10.1038/NPHYS1799

Cite This Page:

Max Planck Institute of Quantum Optics. "Quantum simulator and supercomputer at the crossroads." ScienceDaily. ScienceDaily, 3 November 2010. <www.sciencedaily.com/releases/2010/10/101004101437.htm>.
Max Planck Institute of Quantum Optics. (2010, November 3). Quantum simulator and supercomputer at the crossroads. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2010/10/101004101437.htm
Max Planck Institute of Quantum Optics. "Quantum simulator and supercomputer at the crossroads." ScienceDaily. www.sciencedaily.com/releases/2010/10/101004101437.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins