Featured Research

from universities, journals, and other organizations

2010 Nobel Prize in Chemistry: Creating complex carbon-based molecules using palladium

Date:
October 6, 2010
Source:
Nobel Foundation
Summary:
The 2010 Nobel Prize in Chemistry has been awarded to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for developing palladium-catalyzed cross coupling. This chemical tool has vastly improved the possibilities for chemists to create sophisticated chemicals -- for example, carbon-based molecules as complex as those created by nature itself.

New ways of linking carbon atoms together has allowed scientists to make medicines and better electronics.
Credit: iStockphoto/Liang Zhang

The Royal Swedish Academy of Sciences has awarded the Nobel Prize in Chemistry for 2010 to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for developing new ways of linking carbon atoms together that has allowed scientists to make medicines and better electronics.

Related Articles


American citizen Richard F. Heck, 79, of the University of Delaware in Newark, Delaware, Japanese citizens Akira Suzuki, 80, of Hokkaido University in Sapporo, Japan, and Ei-Ichi Negishi, 75, of Purdue University in West Lafayette, Indiana, will share the 10 million Swedish crowns ($1.5 million) award for their development of "palladium-catalyzed cross couplings in organic systems."

Carbon, the atom that is the backbone of molecules in living organisms, is usually very stable and it can be difficult in the laboratory chemically to synthesize large molecules containing carbon. In the Heck reaction, Negishi reaction and Suzuki reaction, carbon atoms meet on a palladium atom, which acts as a catalyst. The carbon atoms attach to the palladium atom and are thus positioned close enough to each other for chemical reactions to start. This allows chemists to synthesize large, complex carbon-containing molecules.

The Academy said it's a "precise and efficient" tool that is used by researchers worldwide, "as well as in the commercial production of for example pharmaceuticals and molecules used in the electronics industry."

Great art in a test tube

Organic chemistry has developed into an art form where scientists produce marvelous chemical creations in their test tubes. Humankind benefits from this in the form of medicines, ever-more precise electronics and advanced technological materials. The Nobel Prize in Chemistry 2010 awards one of the most sophisticated tools available to chemists today.

This year's Nobel Prize in Chemistry is awarded to Richard F. Heck, Ei-ichi Negishi and Akira Suzuki for the development of palladium-catalyzed cross coupling. This chemical tool has vastly improved the possibilities for chemists to create sophisticated chemicals -- for example, carbon-based molecules as complex as those created by nature itself.

Carbon-based (organic) chemistry is the basis of life and is responsible for numerous fascinating natural phenomena: colour in flowers, snake poison and bacteria killing substances such as penicillin. Organic chemistry has allowed man to build on nature's chemistry; making use of carbon's ability to provide a stable skeleton for functional molecules. This has yielded new medicines and revolutionary materials such as plastics.

In order to create these complex chemicals, chemists need to be able to join carbon atoms together. However, carbon is stable and carbon atoms do not easily react with one another. The first methods used by chemists to bind carbon atoms together were therefore based upon various techniques for rendering carbon more reactive. Such methods worked when creating simple molecules, but when synthesizing more complex molecules chemists ended up with too many unwanted by-products in their test tubes.

Palladium-catalyzed cross coupling solved that problem and provided chemists with a more precise and efficient tool to work with. In the Heck reaction, Negishi reaction and Suzuki reaction, carbon atoms meet on a palladium atom, whereupon their proximity to one another kick-starts the chemical reaction.

Palladium-catalyzed cross coupling is used in research worldwide, as well as in the commercial production of for example pharmaceuticals and molecules used in the electronics industry.


Story Source:

The above story is based on materials provided by Nobel Foundation. Note: Materials may be edited for content and length.


Cite This Page:

Nobel Foundation. "2010 Nobel Prize in Chemistry: Creating complex carbon-based molecules using palladium." ScienceDaily. ScienceDaily, 6 October 2010. <www.sciencedaily.com/releases/2010/10/101006085720.htm>.
Nobel Foundation. (2010, October 6). 2010 Nobel Prize in Chemistry: Creating complex carbon-based molecules using palladium. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/10/101006085720.htm
Nobel Foundation. "2010 Nobel Prize in Chemistry: Creating complex carbon-based molecules using palladium." ScienceDaily. www.sciencedaily.com/releases/2010/10/101006085720.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins