Featured Research

from universities, journals, and other organizations

New clues to origin of diabetes: Mutant gene protein can derail normal insulin production in animal pancreatic beta cells

Date:
October 12, 2010
Source:
University of Michigan Health System
Summary:
Scientists have identified events inside insulin-producing pancreatic cells that set the stage for a neonatal form of non-autoimmune type 1 diabetes, and may play a role in type 2 diabetes as well. The results point to a potential target for drugs.

Mutant proinsulin protein attacks normal proinsulin protein.
Credit: Image courtesy of University of Michigan Health System

University of Michigan scientists have identified events inside insulin-producing pancreatic cells that set the stage for a neonatal form of non-autoimmune type 1 diabetes, and may play a role in type 2 diabetes as well. The results point to a potential target for drugs to protect normally functioning proteins essential for producing insulin.

A study published online in the journal PLoS ONE shows that certain insulin gene mutations involved in neonatal diabetes cause a portion of the proinsulin proteins in the pancreas' beta cells to misfold. Proinsulin proteins are the precursors of insulin, which the body needs to regulate blood sugar levels. Crucially, the misfolded mutant proteins cause normal proinsulin proteins in beta cells to misfold as well, the scientists found in studies of mouse and rat beta cells.

"Once the 'good' proinsulin turns 'bad,' it cannot be made into insulin and so the beta cells, and then the whole animal, become insulin deficient. The insulin deficiency causes diabetes and from there, things get worse and worse," says Peter Arvan, M.D., Ph.D., the study's senior author. He directs the Michigan Comprehensive Diabetes Center and is William and Delores Brehm Professor and chief of Metabolism, Endocrinology and Diabetes at the U-M Medical School.

Significance

"We want to see how the mechanism we found in this rare form of neonatal diabetes applies to other forms of diabetes," says Ming Liu, M.D., Ph.D., the study's first author and a research assistant professor of internal medicine at the U-M Medical School.

Diabetes researchers know that protein misfolding in beta cells also occurs on a smaller scale in mice and people without diabetes, and at higher levels in type 2 diabetes, Arvan says. In type 2 diabetes, people develop reduced sensitivity to insulin, causing beta cells to work overtime and eventually fail. In non-autoimmune type 1, diabetes results when genetic mutations cause insufficient production of insulin from pancreatic beta cells.

"In all diabetes, beta cells don't perform to the level needed," says Arvan. "It's possible that the beta cell failure of type 2 diabetes also has a critical protein folding component," he says. "The question is, can you reach a point in ordinary diabetes where misfolding causes the problem we have identified?"

Research details

In lab dish cultures of normal rat and mice beta cells, the scientists introduced single gene mutations known to be involved in various types of neonatal diabetes. They consistently found that misfolding occurred in normal proinsulin protein when mutant proinsulin protein was present. They also observed the same aberrant events in the pancreatic beta cells of Akita mice, a mouse model with the same mutation that occurs in a human family with neonatal diabetes.

Context

Proteins, which are molecules made of amino acids arranged in a certain order determined by genes, normally fold into specific shapes. But sometimes misfolding occurs. Protein folding is a phenomenon that has drawn a lot of recent attention from scientists who believe it plays a role in several common diseases.

Diabetes researchers currently lack a clear picture of why beta cells in the pancreas fail in diabetes. Many researchers look at stress and the stress response from the beta cells' endoplasmic reticulum or ER, a structure that transports materials within the cell. Stress in this structure occurs in diabetes, along with reduced beta cell mass.

Arvan and Liu found in the study that each of the mutations they examined led to ER stress and the ER stress response in beta cells, but that these ER events alone could not block insulin production in normal beta cells and do not appear to be the origin of the insulin deficiency. They hypothesize that protein misfolding events first block insulin production and cause insulin deficiency, leading to diabetes.

What's next

Uncovering the earliest events in the molecular mechanism of the disease may help diabetes researchers discover new therapies, the authors say. New drugs that could emerge would be at least several years away.

"It may be possible to find a way to modulate the environment in the endoplasmic reticulum to let the normal protein fold quickly, before the abnormal protein can act," says Liu.

Additional authors: Leena Haataja, Jordan Wright, U-M Medical School; Nalinda P. Wickramasinghe, Qing-Xin Hua, Nelson F. Phillips, Michael A. Weiss, Case Western Reserve University; Fabrizio Barbetti, University of Tor Vergata, Rome, Italy.

Funding: National Institutes of Health


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthias G. von Herrath, Ming Liu, Leena Haataja, Jordan Wright, Nalinda P. Wickramasinghe, Qing-Xin Hua, Nelson F. Phillips, Fabrizio Barbetti, Michael A. Weiss, Peter Arvan. Mutant INS-Gene Induced Diabetes of Youth: Proinsulin Cysteine Residues Impose Dominant-Negative Inhibition on Wild-Type Proinsulin Transport. PLoS ONE, 2010; 5 (10): e13333 DOI: 10.1371/journal.pone.0013333

Cite This Page:

University of Michigan Health System. "New clues to origin of diabetes: Mutant gene protein can derail normal insulin production in animal pancreatic beta cells." ScienceDaily. ScienceDaily, 12 October 2010. <www.sciencedaily.com/releases/2010/10/101012114057.htm>.
University of Michigan Health System. (2010, October 12). New clues to origin of diabetes: Mutant gene protein can derail normal insulin production in animal pancreatic beta cells. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/10/101012114057.htm
University of Michigan Health System. "New clues to origin of diabetes: Mutant gene protein can derail normal insulin production in animal pancreatic beta cells." ScienceDaily. www.sciencedaily.com/releases/2010/10/101012114057.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins