Featured Research

from universities, journals, and other organizations

Gene identified that prevents stem cells from turning cancerous

Date:
October 15, 2010
Source:
Rockefeller University
Summary:
Researchers identify gene that regulates apoptosis in stem cells. The work is the first to connect the death of stem cells to a later susceptibility to tumors in mice. It provides evidence of the potentially carcinogenic downside to stem cell treatments, and suggests that nature has sought to balance stem cells' regenerative power against their potentially lethal potency.

Spleens and genes: Scientists have found a gene without which mice have too many stem cells that live for too long. Mice without the gene, Sept4, develop cancer in their spleens (right).
Credit: Image courtesy of Rockefeller University

Stem cells, the prodigious precursors of all the tissues in our body, can make almost anything, given the right circumstances. Including, unfortunately, cancer. Now research from Rockefeller University shows that having too many stem cells, or stem cells that live for too long, can increase the odds of developing cancer. By identifying a mechanism that regulates programmed cell death in precursor cells for blood, or hematopoietic stem cells, the work is the first to connect the death of such cells to a later susceptibility to tumors in mice. It also provides evidence of the potentially carcinogenic downside to stem cell treatments, and suggests that nature has sought to balance stem cells' regenerative power against their potentially lethal potency.

Related Articles


Research associate Maria Garcia-Fernandez, Hermann Steller, head of the Strang Laboratory of Apoptosis and Cancer Biology, and their colleagues explored the activity of a gene called Sept4, which encodes a protein, ARTS, that increases programmed cell death, or apoptosis, by antagonizing other proteins that prevent cell death. ARTS was originally discovered by Sarit Larisch, a visiting professor at Rockefeller, and is found to be lacking in human leukemia and other cancers, suggesting it suppresses tumors. To study the role of ARTS, the experimenters bred a line of mice genetically engineered to lack the Sept4 gene.

For several years, Garcia-Fernandez studied cells that lacked ARTS, looking for signs of trouble relating to cell death. In mature B and T cells, she could not find any, however, so she began to look at cells earlier and earlier in development, until finally she was comparing hematopoietic progenitor and stem cells. Here she found crucial differences, to be published in Genes and Development.

Newborn ARTS-deprived mice had about twice as many hematopoietic stem cells as their normal, ARTS-endowed peers, and those stem cells were extraordinary in their ability to survive experimentally induced mutations.

"The increase in the number of hematopoietic progenitor and stem cells in Sept4-deficient mice brings with it the possibility of accelerating the accumulation of mutations in stem cells," says Garcia-Fernandez. "They have more stem cells with enhanced resistance to apoptosis. In the end, that leads to more cells accumulating mutations that cannot be eliminated."

Indeed, the ARTS-deprived mice developed spontaneous tumors at about twice the rate of their controls. "We make a connection between apoptosis, stem cells and cancer that has not been made in this way before: this pathway is critically important in stem cell death and in reducing tumor risk," Steller says. "The work supports the idea that the stem cell is the seed of the tumor and that the transition from a normal stem cell to a cancer stem cell involves increased resistance to apoptosis."

ARTS interferes with molecules called inhibitor of apoptosis proteins (IAPs), which prevent cells from killing themselves. By inhibiting these inhibitors, under the right circumstances ARTS helps to take the brakes off the process of apoptosis, permitting the cell to die on schedule. Pharmaceutical companies are working to develop small molecule IAP antagonists, but this research is the first to show that inactivating a natural IAP antagonist actually causes tumors to grow, Steller says. It also suggests that the premature silencing of the Sept4/ARTS pathway at the stem cell level may herald cancer to come.

"This work not only defines the role of the ARTS gene in the underlying mechanism of mammalian tumor cell resistance to programmed cell death, but also links this gene to another hallmark of cancer, stem and progenitor cell proliferation," said Marion Zatz, who oversees cell death grants, including Steller's, at the NIH's National Institute of General Medical Sciences. "The identification of the ARTS gene and its role in cancer cell death provides a potential target for new therapeutic approaches."


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria Garcia-Fernandez, Holger Kissel, Samara Brown, Travis Gorenc, Andrew J. Schile, Shahin Rafii, Sarit Larisch, and Hermann Steller. Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes and Development, 2010; 24 (20)

Cite This Page:

Rockefeller University. "Gene identified that prevents stem cells from turning cancerous." ScienceDaily. ScienceDaily, 15 October 2010. <www.sciencedaily.com/releases/2010/10/101014191151.htm>.
Rockefeller University. (2010, October 15). Gene identified that prevents stem cells from turning cancerous. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/10/101014191151.htm
Rockefeller University. "Gene identified that prevents stem cells from turning cancerous." ScienceDaily. www.sciencedaily.com/releases/2010/10/101014191151.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins